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Abstract

Ongoing advances of semiconductor technology enable the integration
of more and more complex circuits, thus making feasible devices of

ever increasing functionality for ever new applications. Naturally,

power dissipation has evolved into a key constraint for the design of

VLSI circuits, particularly for battery-powered applications.
This thesis deals specifically with power dissipation of digital VLSI

circuits subject to the statistical properties of the data being pro¬

cessed. The dependence of power consumption on data statistics is

explored with regard to three major aspects: power estimation, power

minimization, and practical low-power design.

1. In the context of gate-level power estimation, a probabilistic

approach to determine the switching activity in logic circuits

from the given input statistics is presented. This approach can

take into account any kind of signal correlation and calculates

the correct switching activity for every node in the circuit. A

novel approximation technique for the efficient control of the

estimation accuracy is proposed.

2. The question of fundamental lower bounds on power dissipa¬
tion in consideration of data statistics is pursued. A systematic
view of minimum power dissipation is developed, which leads

to a classification of the lower bound problem. The resulting

subproblems are set in context to known information-theoretic

bounds on data coding and transmission.

3. By means of speech filtering it is exemplified how designers of

application-specific circuits may avail themselves of data statis-

xv



xvi Abstract

tics to cut down the energy use. Various number representations
and data encodings are examined, and potential power savings
are quantified subject to statistical signal properties and oper¬

ating conditions. This permits the derivation of general coding

guidelines for application-specific processing of speech data.



Zusammenfassung

Die anhaltende Weiterentwicklung der Halbleitertechnologie gestattet
die Integration von immer komplexeren Schaltkreisen. Dies ermöglicht
die Realisierung hochfunktioneller Geräte und eröffnet immer neue

Einsatzfelder. Es überrascht daher nicht, dass die Leistungsaufnahme
von VLSI Schaltkreisen mittlerweile eine Schlüsselposition im Ent-

wurfsprozess einnimmt, insbesondere bei batteriebetriebenen Anwen¬

dungen.
In der vorliegenden Arbeit wird speziell die Leistungsaufnahme

von digitalen VLSI Schaltkreisen im Zusammenhang mit den stati¬

stischen Eigenschaften der zu verarbeitenden Daten behandelt. Die

Abhängigkeit der Leistungsaufnahme von der Datenstatistik wird

im Hinblick auf drei wesentliche Aspekte untersucht: Leistungs¬

abschätzung, Leistungsminimierung und praktischer Entwurf strom¬

sparender Schaltungen.

1. Für die Leistungsabschätzung auf Gatterniveau wird ein wahr¬

scheinlichkeitstheoretischer Zugang zur Bestimmung der Schal¬

taktivität in logischen Netzwerken vorgestellt. Dieser Zugang

ermöglicht die Berücksichtigung jeglicher Art von Signalkorre¬
lation, so dass eine genaue Berechnung der Knotenaktivitäten

möglich ist. Ein neuartiges Näherungsverfahren erlaubt die ele¬

gante Steuerung der Schätzgenauigkeit.

2. Es wird der Frage nach einer grundsätzlichen unteren Schranke

für die Leistungsaufnahme nachgegangen. Eine systematische

Darstellung der Fragestellung führt zu einer Klassifizierung des

Problems. Die daraus resultierenden Teilprobleme werden im

xvii



xviii Zusammenfassung

Zusammenhang mit bekannten informationstheoretischen Aus¬

sagen über Codier- und Übertragungsgrenzen diskutiert.

3. Anhand der Filterung von Sprachsignalen wird beispielhaft de¬

monstriert, wie beim Entwurf anwendungsspezifischer Schaltun¬

gen die Statistik der Daten zur Senkung des Stromverbrauchs

ausgenutzt werden kann. Das Sparpotential verschiedener Zah¬

lendarstellungen und Codierungen wird in Abhängigkeit von sta¬

tistischen Signalparametern und Betriebsbedingungen gemes¬

sen. Das erlaubt, Codierrichtlinien für die anwendungsspezi¬
fische Verarbeitung von Sprachsignalen aufzustellen.



Chapter 1

Introduction

1.1 Motivation

There is one formula that governs low-power digital VLSI design. It

appears in virtually any text related to the subject matter and, pre¬

sumably, is known to any VLSI designer who faces power dissipation
issues. This formula goes

2
Power = Voltage x Capacitance

x Clock frequency x Switching activity.

The present thesis will be about this enchanting formula. More

specifically, our investigations will revolve mainly around the rear¬

most term in this equation - switching activity. Generally speaking,

switching activity designates the time behavior, or liveliness, of logic

signals. This time behavior, in one form or the other, must reflect

the characteristics of the application data at hand. The resulting
dependence of power dissipation on data statistics is the leitmotif

for this thesis, as it combines challenges at the conceptual level with

questions of practical significance.

With ongoing advances of semiconductor technology and the conse¬

quential boost in the complexity of integrated circuits (IC), power

1



2 Introduction

dissipation in general has been trending higher on the list of VLSI

design constraints. Today it is at or near the top of this list, notably
for ICs in portable devices where battery lifetime is a major concern.

A considerable portion of these devices processes data with statisti¬

cal properties that are a priori known. In this case, data statistics

may be seen as an additional parameter for the design of application-

specific ICs (ASIC) and instruction set processors (ASIP). Fields of

application include wireless communication, portable audio and video

devices, and digital hearing instruments.

1.2 Overview

1.2.1 Goal of the Thesis

In this thesis we focus on three major aspects of low-power digital
VLSI design in relation to the statistical properties of the application
data. The corresponding goals can be formulated as follows:

1. Power estimation: Develop an analytical model suitable for ex¬

plicit calculation of switching activity in logic circuits with ar¬

bitrary input statistics. Find means such that this model can

deal with the state-explosion problem associated with bit-level

analysis.

2. Minimum power dissipation: Explore the question of fundamen¬

tal lower bounds on power dissipation by appending data statis¬

tics to the list of low-power VLSI design parameters. Illumi¬

nate the relation between the power dissipation limit and known

information-theoretic bounds on data coding and transmission.

3. Practical low-power design: Show in the occurrence of speech

processing that data statistics can be employed for the design of

application-specific circuits with reduced power consumption.

1.2.2 Outline of the Thesis

The thesis is organized as follows: In chapter 2 the basic mechanisms

of power dissipation in CMOS circuits are reviewed. The three subse¬

quent chapters then are devoted to the three major aspects described
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above: Chapter 3 deals with probabilistic methods for switching ac¬

tivity estimation in logic circuits. Chapter 4 pursues the question of

minimum power dissipation in consideration of data statistics. Chap¬
ter 5 shows by means of speech filtering that data statistics can serve

as vehicle for reduction of switching activity and energy use. Each of

these three chapters is largely self-contained, but they all share one

common theme - power dissipation of VLSI circuits in the context

of data statistics. Finally, the thesis closes in chapter 6 with some

general remarks and suggestions for future work.

1.2.3 Contribution of the Thesis

The main contributions of the thesis to the three aspects of low-power

digital VLSI mentioned above can be summarized as follows.

Probabilistic circuit analysis: In chapter 3, a theoretical basis

for exact calculation of switching activity in logic circuits is de¬

veloped by bridging the concept of moments of a random vari¬

able known from probability theory and the concept of spectral
transformation known from the theory of switching functions.

Based on this theoretical foundation, a novel heuristic for the

approximation of signal correlation in combinational circuits is

suggested. This heuristic improves the state of the art in that

it allows to control the degree of approximation for any kind of

signal correlation by means of a single parameter [WKFF99].

Lower bound on power dissipation: In chapter 4, a systematic
view of minimum power dissipation in consideration of data

statistics is developed, which culminates in a classification of

the problem of lower bounds on power dissipation. Solutions

are provided for two of the resulting subproblems, i.e. "mini¬

mum supply voltage" and "minimum switching activity". An

existing information-theoretic approach to minimum power dis¬

sipation [Sha97] is put into perspective of the new taxonomy. It

is shown that the most general form of the lower bound problem
is different in nature from the transmission bound problem of

information theory.



4 Introduction

Energy-efficient processing of speech: In chapter 5, wave¬

form coding techniques known from low bit-rate communica¬

tion are examined for energy-efficient filtering of speech signals.
Arithmetic datapath units corresponding to the various cod¬

ing schemes are presented, including a new circuit structure for

the approximation of binary logarithm. Potential power savings
are quantified subject to statistical signal properties and oper¬

ating conditions. This permits the derivation of general cod¬

ing guidelines for application-specific processing of speech data

[WKFFOO, WKFF01].



Chapter 2

Sources of Power

Dissipation

This chapter reviews the basic mechanisms of power dissipation in

digital VLSI circuits in order to reveal its relation to data statistics.

A static CMOS logic style is presumed as this is the predominant
choice for the implementation of VLSI circuits.

There are two fundamentally different sources of power dissipa¬
tion in VLSI systems: dynamic and static power. Dynamic power is

associated with the variation of signal voltages over time. This vari¬

ation represents the progression of the information processing task at

hand. Therefore, dynamic power dissipation is an inherent property
of information representation and processing in VLSI circuits. Static

power, on the other hand, gets dissipated even if all signals remain

stable. In fully complementary-MOS circuits, static power is neither

essential to information representation nor information processing.

2.1 Dynamic Power

Dynamic power dissipation has two sources: Current flowing for the

charging and discharging of parasitic capacitors, and current resulting
from conductive paths crossing over PMOS and NMOS devices. In

figure 2.1 these currents are indicated for a CMOS inverter circuit.

5



6 Sources of Power Dissipation

Figure 2.1: CMOS inverter circuit with crossover current Ico and capacitor

charge (iio-n) and discharge (-/1-+0) current.

2.1.1 Capacitor Charging

Capacitor components

For the inverter circuit in figure 2.1 the voltage across the capacitor

Cl represents the logical value of the output signal. Assuming that

the inverter drives another identical stage, Cl represents the following
physical capacitance components [CB95, KaeOO]:

• The output-to-ground capacitance of the driving inverter circuit,
made up of the junction capacitance between the drain regions
and the local substrate.

• The capacitance between the drain regions and the gate elec¬

trode of the driving inverter, which must get mapped to Cl
with almost its fourfold value due to the Miller effect [ALES98].

• The input-to-ground capacitance of the driven circuit dominated

by the thinoxide below the gate electrodes, and also containing
the source-to-gate capacitances there.

• The total wiring capacitance of the interconnect between out¬

put of driving and input of driven inverter. This capacitance
is made up of the wire-to-ground capacitance, which itself has



Dynamic Power 7

a parallel-plate and fringing-field component, and the wire-to-

wire capacitance, which is significant for modern technologies
with their reduced line spacing.

Furthermore, if the driven circuit has dependent inner nodes due

to series-connected NMOS or PMOS transistors, as is the case for

any multi-input logic gate, extra capacitance appears due to the

drain/source regions at these inner nodes (junction and overlap capac¬

itance, see above). Formally, the inner-node capacitance is attributed

to the load capacitance Cl of the driving cell, but under a simplified
circuit model sometimes also is ascribed to the driven cell.

Charging/Discharging power dissipation

Assuming rail-to-rail logic, i.e. signal voltages that swing back and

forth between Vdd and Vs3, the energy injected from the power sup¬

ply in order to fully charge the load capacitor Cl during a '0' to '1'

transition of Vout is

Esupply — VddCL • (2.1)

Half of this energy is dissipated in the p-channel device for the other

half to be delivered to the capacitor Cl- During the subsequent '1'

to '0' transition, the other half of the injected energy is wasted by

discharging Cl to ground via the n-channel device, see figure 2.1.

Thus, the invested energy Esupviy is used for one charge-discharge

cycle of Cl , corresponding to one switching cycle of the signal voltage
Vout-

The average power dissipated during one charge-discharge cycle
is obtained from dividing the invested energy Esuppiy in (2.1) by the

time required to complete one such cycle. Let Tci denote the time

span of a computation interval and fd be its inverse. For instance,
for a single-edge-triggered clocking strategy fcik = fci, and in case of

dual-edge-triggered clocking fcik = fd/%- Then, the average power

dissipation during one charge-discharge cycle may be written as

Psv, = VldCj-foL (2.2)

with a denoting the expected number of times Vout switches from one
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logical state to the other within one computation interval1.

The expected number of switching events of Vout is a statistical

quantity, which will be formally defined and investigated in chapter 3.

For an isolated logic gate, a depends on the statistical properties of

the gate's input signals and on the logic function of that very gate. In

an overall circuit, a is a function of the data being processed, circuit

structure, and the logic function of the gate at hand.

2.1.2 Crossover Current

The charge/discharge power dissipation in (2.2) is independent of the

actual voltage waveform Vout. However, finite rise and fall times of

input voltage Vin will result in a direct conducting path between

Vdd and Vss for short periods of time during switching, see fig¬
ure 2.1. Specifically, a crossover current Ico will flow as long as

Vth,n < Vin < Vdd ~ \Vth,P\, where Vth>n and Vth,P is the threshold

voltage of the NMOS and PMOS device, respectively. Besides input

rise/fall times, the crossover current is an intricate function of vari¬

ous other parameters, e.g. capacitive load Cl-, device geometries and

threshold voltages.

Just as the switching power Psw, the crossover component of power

also varies approximately proportional with the number of signal tran¬

sitions a, simply because the conductive path between Vdd and Vss

exists only during switching events. However, the power consumed

due to crossover currents contributes much less to the total dynamic

power, typically about 10.. .20% for well-designed circuits [Yea98].

2.2 Static Power

Static power dissipation basically may have two different sources:

Leakage currents flowing due to the employed MOS transistor-based

implementation technology, and currents flowing from Vdd to Vss over

functional resistive loads.

1From a functional point of view, there exists an upper bound of a < 1 for

all data signals. However, spurious signal transitions may innate a beyond that

limit, see section 3.4.5.
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2.2.1 Leakage Current

There are two main components of leakage currents:

• sub-threshold leakage due to carrier diffusion between source

and drain regions when the transistor is turned off, and

• diode leakage at reverse-biased p/n junctions (drain/well and

well/well).

The magnitude of these currents is set predominantly by process pa¬

rameters, and the contribution to total power usually is about 1%

or less, although with advanced technologies and reduced supply and

threshold voltages leakage power becomes more significant.

Strictly speaking, leakage power is also subject to data statistics,
since sub-threshold leakage and diode leakage at drain/well junctions

depend on the logical state of the cell.

2.2.2 Resistive Loads

In truly complementary-MOS circuits there exists no DC path be¬

tween Vdd and Vsa if all signal values remain stable. However, sinks

of static power may hide in units that do not adhere to a fully

complementary-MOS design style. Such units include passive pull-

up/downs, clock generation units, macro-cell memories, LVDS re¬

ceivers/transmitters, and pseudo-NMOS/PMOS subcircuits [KaeOO].
Power dissipation due to resistive loads in general depends on the

data statistics, because the voltage level of at least one terminal of the

resistor will be controlled by some signal amplitude, thus determining
the average proportion of time during which current is conducted.

2.3 Implications

Virtually any current causing CMOS circuits to dissipate power is

subject to the statistical properties of the data that stimulate the cir¬

cuit. However, there is one single source that predominates overall

dissipation in static CMOS circuits, i.e. the current flowing for charg¬

ing parasitic capacitances when signals change their logical state. The
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dependence of the resulting power dissipation Psw in (2.2) on the tem¬

poral switching behavior of data signals motivates the investigation
of data statistics in the context of low-power VLSI.



Chapter 3

Probabilistic Circuit

Analysis for Power

Estimation

3.1 Introduction

3.1.1 Motivation

For the design of low-power circuits, power estimation is indispensable
as it supplies feedback on the current value of the power cost function

during the optimization process. Power estimation techniques and

tools exist for every abstraction level in the design process:

• system/algorithm level

• architectural/register-transfer (RT-) level

• logic/gate level

• transistor/physical level
.

Among the levels of abstraction, the influence of data statistics on

the produced power estimate is most evident at the logic/gate level.

This is because the power estimation model (2.2) that applies at this

11



12 Probabilistic Circuit Analysis

level is sufficiently specific to incorporate a data-related statistical

measure, i.e. switching activity a, but yet is simple enough to be

applied even to the largest circuit within reasonable time. Although

power models at lower levels of abstraction do, in principle, reflect

data dependency, they are infeasible even for medium-sized circuits

and have lost relevance in the light of standard-cell based design and

high-level synthesis. On the other hand, power models at higher levels

of abstraction do not, or only partially, reflect the data dependency
involved in the power consuming charge/discharge processes, since

physical design information is not available at this level.

3.1.2 Previous Work

Due to its significance for low-power design, a huge number of re¬

searchers have worked in the field of power estimation. Overviews

of this work are provided for instance in [S+95, MPS98]. Previous

work within the scope of this chapter will be cited and classified in

section 3.2.3.

3.1.3 Outline

This chapter is devoted to power estimation at the gate level, since the

influence of data statistics is most evident on this level of abstraction.

More specifically, the primary focus will be on probabilistic techniques
for switching activity estimation. Despite the large number of pub¬
lications on this topic, a comprehensive treatment that includes all

types of signal correlation and thus allows an analytical calculation of

switching activity can hardly be found.

Section 3.2 introduces basic terms and concepts in gate-level power
estimation. In section 3.3 statistical measures for binary signals are

defined, which subsequently will be employed for probabilistic anal¬

ysis of logic circuits. Switching activity estimation in combinational

circuits is the subject of section 3.4, where a new technique for the

approximation of signal correlation is introduced and experimentally
verified. Section 3.5 then deals with probabilistic analysis of sequen¬

tial circuits.
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3.2 Gate-level Power Estimation

3.2.1 Circuit and Power Model

A combinational logic circuit is modeled as cycle-free directed graph
with two types of nodes: primary inputs (PI) and logic gates, see fig¬
ure 3.1. Pis have none, logic gates at least one incoming edge. All

nodes exactly have one outgoing edge, which then may have arbitrary
fan-out1. The edges of the graph represent electrical connections be¬

tween the nodes. The orientation of the edges is given by the inputs
and outputs of the logic gates. Nodes without any successor node are

called primary outputs (PO).
If there are n Pis and m POs, the circuit implements a mapping

{0, l}n —y {0, l}m by means of the g > m logic gates. These gates
are memory-free and either implement basic Boolean functions such

as (n)and, (n)0R, x(n)or and NOT, or are themselves subcircuits

composed of those basic functions. For now, it is assumed that the

gates have zero propagation delay. A non-zero delay model will then

be considered in section 3.4.5.

Each node of the circuit is associated with a binary signal. The

Pis are associated with signals xi,...,xn. The logic gates are

associated with binary signals yi,..., ym-iiVm • • iVg- These signals

(logic gates) are topologically sorted such that signal yj (j = 1,..., g)
does not depend on any signal yi with I > j.

For power estimation, the power dissipation model (2.2) is applied to

every logic gate in the circuit. There are two parameters in this model

that need to be identified:

Load capacitance. The load capacitance Cx. associated with gate

j (j = 1,... ,g) is estimated from technology or physical layout
information. It is assumed that all relevant capacitance compo¬

nents, such as the output-to-ground capacitance of gate j», the

total capacitance for wiring gate j to its successor gates as well

as the input-to-ground and inner-node capacitance of these suc¬

cessor gates, are lumped into a single capacitor at the output of

gate j, see section 2.1.1.

Multiple-driven nets are not considered here.
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Figure 3.1: Model of logic circuit for gate-level power estimation.

For a given circuit, the load capacitances are independent of data

statistics and hence we will not further discuss how to obtain

them.

Switching activity. The activity ayj, (j = 1,...,#) refers to the

switching behavior of the output of gate j, i.e. binary signal yj.
The precise implication of the node activities and their deriva¬

tion depends on the objective of power estimation, as will be

discussed next.

3.2.2 Power Measures

The following power measures may be discerned:

Average power. This is the most common objective of gate-level

power estimation, where switching activity ay refers to the aver¬

age number of times logic gate y changes its binary state within

one computation interval. This number strongly depends on the

statistical properties of the input data applied to the circuit.

Summation over all gates yields the average power dissipation
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of the circuit:

9
a

Pavg = Vddfci^ZCLj-TT- (3.1)
i=l

Average power dissipation is of central importance for battery
life-time considerations in mobile applications. Furthermore,
this measure is of interest in reliability analysis for the overall

system, where high power dissipation poses challenges on pack¬

aging and heat removal technology.

Instantaneous power. Given the present binary state of each gate,
the instantaneous or cycle power of some circuit refers to the

dissipation induced by one particular input pattern. Switching

activity in this case is not a meaningful concept.

Maximum power. A measure of practical interest results when in¬

stantaneous power is maximized over all combinations of present

circuit state and possible input pattern. This peak power is used

to stay clear of switching noise and electromigration. It is also of

interest for electro-magnetic compatibility considerations. Since

in practice not all gates change their state at the same time dur¬

ing the computation interval, signal delays must be considered

in order to obtain a tight upper bound on peak power.

Since only average power depends on data statistics, all subsequent
discussion will be devoted to this measure. The provision of average

switching activities aVj for evaluation of (3.1) will be discussed next.

3.2.3 Switching Activity Estimation

Signal correlation

Average circuit power can be seen as a weighted sum of gate activi¬

ties. Therefore, a random error afflicted with the estimated ayj can be

tolerated, since such an error tends to average out due to summation

over all nodes. However, there are also situations where activity must

be estimated accurately for every node, e.g. for gate-level power op¬

timization that performs activity-driven re-structuring of the circuit.
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Thereby, the goal is to hide high-activity nodes within complex gates

where they drive smaller load capacitances [IP97].
For accurate estimation of gate activities, signal correlation is cru¬

cial [SK96]. In combinational logic circuits, two basic types of corre¬

lation matter:

Spatio-temporal correlation. This type of correlation refers to sta¬

tistical dependencies which are present in the application data.

Spatial correlation refers to dependencies between different PI

signals at the same time instance. Temporal correlation means

dependencies between different time instances of the same or

different PI signals. Spatio-temporal correlation of input sig¬
nals causes correlation of internal signals and thus impacts their

switching activity.

Structural correlation. Even if the input data is completely uncor¬

rected, correlation may be introduced by the circuit structure

itself. Structural correlation takes effect through node fanouts

which reconverge at subsequent gates in the circuit network. For

instance, the inputs to gate y% in figure 3.1 are structurally cor¬

related, because they all depend on PI x^. This shall be taken

into account for accurate calculation of ay3.

Methods to obtain information on the gate switching activities ayj
can be divided into two categories: simulation-based (dynamic) and

probabilistic (static) approaches, see figure 3.2. The two approaches

fundamentally differ in how they handle signal correlation. There also

exist hybrid methods, which use aspects from both categories in order

to combine their respective advantages while avoiding their drawbacks

[C+98].

Simulation-based activity estimation

In simulation-based approaches activity information is obtained from

monitoring the gate toggling during explicit logic simulation of the cir¬

cuit. In order to obtain representative activity information, the binary
stimuli for this simulation shall resemble the statistical properties of

the functional input data as close as possible. After a sufficiently large
number of stimuli vectors is simulated, the average switching activ¬

ity at every node will converge towards a narrow interval around the
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recording activities
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stimuli vectors parameter probabilistic circuit switching
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10010.. .10

01000.. .01

10110.. .11
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Figure 3.2: Simulation-based (top) and probabilistic (bottom) activity
estimation.

true value. The number of vectors necessary for convergence strongly
depends on the circuit itself as well as on the desired accuracy. A

priori information about the number of vectors required, is in general
not available. This issue may be addressed by statistical estimation

techniques that run the simulation until a stopping criterion for the

overall circuit power [BNYT93, YTK98] or individual node activities

[XN94] is met.

A great advantage of simulation-based methods is that they implic¬

itly take into account all kind of signal correlations. From a practical

point of view another plus is that logic simulation is a standard task

in digital VLSI and a simulator is available virtually anywhere.

Probabilistic activity estimation

As opposed to simulation, probabilistic techniques use statistical

parameters to describe the properties of the circuit's input data.

These parameters are employed to derive the switching activity of the

gates. The advantage of such an approach is that no lengthy binary
vectors are required and convergence of activity values is not an issue.

10010.. .10

01000.. .01

10110.. .11

10110.*. .01
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Due to their incremental nature, probabilistic methods are better

suited to activity-driven power optimization, where the network

structure is being modified as part of the process. Simulation-based

methods in this case would require storage of long traces for every

gate or complete re-simulation of the circuit.

The largest challenge for probabilistic techniques is to efficiently han¬

dle signal correlation effects. While for small circuits the activity
of every gate may be calculated accurately, approximation of signal
correlation is indispensable for large circuits. Several methods for

probabilistic activity estimation have been proposed in the literature,
which differ in how and to what extent they consider signal correla¬

tions. These methods can be divided in two classes:

Global approach. Methods of this class describe the logic function

of any node globally, i.e. with respect to the Pis. To do so, either

binary decision diagrams (BDD) [SSW96, MDG+97, DTP98] or

symbolic polynomials [CMD97] are employed. In both cases,

the effect of reconvergent fanouts is accounted for, but spatial
correlation between input signals was ignored. For large circuits,

concepts, such as reconvergence regions [SSW96] and super-gates

[CMD97], are introduced in order to cope with complexity.

Incremental approach. These methods describe the logic function

of each gate with respect to its immediate input signals. Thus,
structural correlation is not captured. In [MMP95, MMP98]
correlation coefficients are used to describe signal dependencies.
The complexity of this approach has been reduced in [TTSG97].
Methods employing correlation coefficients have the advantage
that dependencies among input signals can be modeled by means

of these coefficients. In order to handle large circuits efficiently,

only pairwise signal correlation is considered. Relevant signal

pairs, i.e. signals that converge anywhere in the circuit, must be

identified prior to propagation of statistical parameters.

None of the above techniques offers efficient control over the approx¬

imation of all types of signal correlation. Section 3.4 describes such a

method that governs the complexity-accuracy tradeoff by means of a

single user-defined parameter. This approach shares features of either
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of the two classes above: It is global because the circuit is described

by polynomials of PI variables. However, these expressions are be¬

ing constructed incrementally, with approximations being attained by

employing immanent information of the Boolean function at hand.

3.3 Probabilistic Measures for Binary

Signals

3.3.1 One-dimensional Binary Signals

Signal model

In the framework of probabilistic circuit analysis, a binary discrete-

time signal x(k) is modeled as random sequence {Xk} with sample

space Q, = {0,1} and k = 0,1, 2,... being the time index, see ap¬

pendix A. In general it is assumed that {Xk} is stationary in the

strict sense2. Therefore, time index k is suppressed when appropri¬
ate. Furthermore, the properties of the random sequence {Xk} are

referred to as the properties of signal x(k).

Signal probabilities and temporal correlation

The static probability p\ of a binary signal x is defined as the probabil¬

ity of finding x in logic state '1'. Since x is stationary, this probability

equals the expected value, i.e. the first moment3 of the associated

binary random variable X:

E[X] = Y, X-PW = M* = l} = Pi • (3-2)
x{0,l}

Thus, in case of a binary random variable the expected value itself

represents a probability. The same holds true for the product of any

number of binary random variables. This observation is key to the

activity estimation algorithm to be presented in section 3.4.

2 For combinational circuits it is sufficient to assume wide-sense stationarity
because only first-order statistics are relevant in this case.

3From (A.3) follows that for a binary random variable the i-th moment

(i=2,3,... ) is identical to the first moment.
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In particular, E[X2] = E[X] = pi, and thus from (A.5) follows

the variance or signal power of x as

*l = E[X2] - (E[X]f = pKI-pD • (3.3)

As expected, for px = 0 or px = 1, i.e. for x being a constant, the

signal power is zero.

Of specific interest is the expected value of the product of two succes¬

sive samples in a binary signal x:

E[Xk-Xk+1] = Pr{x{k) = 1, x(k + l) = 1} = pH . (3.4)

Accordingly, all first-order joint probabilities will be denoted as4

px1x = Pr{x(k) = t, x(k + 1) = j} , i,je {0,1} (3.5)

with

Pll + Pll + Pit +PU = 1
• (3-6)

In general, signal values at time k and k + 1 will not be indepen¬
dent. The correlation between successive samples in signal x can be

measured by the first-order correlation coefficient gx, which follows

from (A.8) and the stationarity of x as

E[Xk-Xk+i] — E[Xk]-E[Xk+i]
Qx =

y/E[(Xk - E[Xk})2]-E[(Xk+i - E[Xk+i})2]

Pli ~ (Px)2 Px"-x " (Px)2
(3.7)

<r2 pI^-pD

In general — 1 < gx < 1. If px"_x = {p\)2 then qx = 0 and signal x is

said to be temporally uncorrelated. If qx > 0 (gx < 0) signal x is tem¬

porally correlated (anti-correlated), indicating a higher probability
of finding two successive samples of x in the same (different) logical
state than another signal y with the same static probability py = px.

Note that qx is undefined for a2 — 0, i.e. for constant signals.

However, employing L'Hospital's rule yields Qx\pi=o = £a:|pi=i = 1,
i.e. maximum correlation for constant signals, which is intuitive.

4The token "-" is used to indicate the reference to consecutive time points, in

contrast to joint probabilities of several random sequences sampled at the same

point in time.
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Example:

Figure 3.3 shows three periodic signals5 x, y, and z with pi = p^ =

pi = | but different temporal correlation. Although the three signals
have equal signal power a2 = a2 — a2 = |, the activity in terms of

logical state changes is quite different. D

Switching activity

Formally, the switching activity of a binary signal x is defined as

«x = Ptl+Pll- (3-8)

Thus ax gives the average number of times, a binary signal changes
its logical state in a certain number of computational intervals. ax

is also referred to as activity factor, transition activity or transition

probability. The latter name, however, is to be used with precaution,
since for non-zero delay models a binary signal may change its logical
state more than once per computational interval, resulting in ax larger
than one, see section 3.4.5.

The following theorem provides the basis for the activity estima¬

tion algorithm to be presented in section 3.4, by stating that the

switching activity of any (stationary) binary signal x can be com¬

puted from just two statistical measures of x.

5Periodic signals are chosen solely for convenience, such that to be able to

represent average statistical properties with a finite number of samples.
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Theorem 3.1

The switching activity ax of a binary signal x is given by its static

probability pi and the joint probability px"}x as

ocx = 2(pI-Px:1) (3.9)

Proof: Since signal x is stationary, the probability of finding x at

logic state '1' is given by pi = px\x + pl\x = p°:x + plx}x. Hence, the

probability of x changing its state from '1' to '0' is the same as the

probability of changing from '0' to '1', i.e. px~_°x = px~}x — pi — px~.x.

Substituting this in (3.8) gives the proposition.

Applying (3.9) to the signals in figure 3.3 yields ctx = |, ay = |, and

az — \. Thus, for a given static probability pxx the switching activity
decreases with increasing correlation coefficient qx. This relation can

explicitly be expressed by substituting (3.3) into (3.7) and combining
this with (3.9):

ax = 2 pl(l - pl)(l - qx) . (3.10)

Corollary 3.1

The switching activity ax of a temporally uncorrelated signal x is

twice the signal power:

ax = 2a2x . (3.11)

Proof: With qx = 0 this follows from (3.10) and (3.3).

Hence, to compute the switching activity ax of a temporally uncor¬

related signal, the knowledge of static probability pi is sufficient. On

the other hand, applying (3.11) to a temporally correlated signal, in¬

troduces an error for ax. The following theorem provides a bound on

this approximation error.

Theorem 3.2

The switching activity ax of a binary signal x is bounded by

ax < l-2-\pl- 0.5| . (3.12)

Proof: There can be at most twice as many signal transitions as

there are 'l's (or '0's) in x (achieved by the alternating sequence



Probability Measures 23

Figure 3.4: Switching activity ax vs. static probability pi for a binary

signal x. Any valid pair (pl,cxx) falls into the unshaded region.

"01010..."). Thus, ax < 2pl and ax < 2(1 - pi). Together with

ax < 1 this can be written as (3.12).

Figure 3.4 elucidates the relation between switching activity ax and

static probability pi for a stationary binary signal. Any valid pair

(pl,ctx) falls into the unshaded region in figure 3.4. The maximum

switching activity of ax = 1 can only be achieved if pi = |. For

temporally uncorrelated signals (gx = 0) holds ax < ^, with equal¬

ity if and only if pi — |. From figure 3.4 one may also conclude

that overestimation of switching activity is more likely than underes¬

timation when erroneously applying (3.11) to a temporally correlated

signal. Except for pi = |, the maximum absolute error in ax is always
smaller for underestimation than for overestimation.

3.3.2 n-dimensional Binary Signals

The notations introduced previously naturally extend to n-

dimensional binary signals x{k) = (xi(k),.. .,xn(k)) with

Xi(k) (i = l,...,n) being one-dimensional binary signals as in¬

troduced in section 3.3.1. A sample of x at time k is called a
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binary word. Since all Xi(k) are stationary, also the binary words are

stationary.

Definition (3.8) may be generalized to the switching activity of a n-

dimensional binary signal as the sum of the switching activities of its

constituting components:

ocx = aXl + aX2 + ... + aXn . (3.13)

Clearly, it is not reasonable to speak of ax as transition "probability"
in this case.

Moments of binary signals

Of peculiar importance for the activity estimation algorithm to be

presented in section 3.4 are the moments of x. Based on (A.6) and in

analogy to (3.2) the i-th moment of a binary word is defined as

PÏ;[l*u = Pr&h = 1, • •

•, ** = 1} = E[Xh ...
• Xu] (3.14)

with ji,... ,ji being a combination of i disjoint elements from the set

{1,...,n}. For instance let x = (x±,X2, £3), then the second moment

Px\x3 gives the probability of finding the first and third component

of x simultaneously at logic '1'. The first moments of x are just the

static probabilities (3.2) of its component signals.

The z-th moments pl"'1,^.. give evidence of spatial correlation between

the components of a binary word, just the same way as px~}x expresses

temporal correlation within a binary signal, see (3.7). In order to

handle first-order spatio-temporal correlation within a n-dimensional

binary signal x(k), the notation of lag-one i-th. moment is introduced.

These moments are joint probabilities of finding i samples of x, each

of which either drawn at time k or k + 1, simultaneously at logic '1'.

Formally, this can be written as

Ph^xf-x* ...xj2
= Pr{ xj{ (k) = 1,..., xjln (k) = 1,

Jl Jro •'1 Jr

Xj2(k-rl) = l,...,Xj2(k+l) = 1 }(3.15)

with 2 < i = m + r < 2n.
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Figure 3.5: Example of 3-dimensional periodic binary signal.

Example:
For n = 3 the lag-one third moment px\"x\.X2 gives the probability
of simultaneously finding the first and third component of x at time

k, and the second component at the following time step, at logic '1'.

In case of the periodic 3-dimensional signal shown in figure 3.5 this

yieldsp""x*, = f.

3.3.3 Complexity Considerations

Zero-order statistics

The zero-order statistics of a n-dimensional binary signal x is uniquely
defined by its probability mass function (pmf), see appendix A. Since

x is binary, the pmf p(x(k)) comprises 2n probability values. Only
2n—1 of these values are independent, because the sum over all values

must yield one.

It can be shown, that p(x(k)) can be constructed given all i-th

moments (i = 1,... ,n) of a; as defined in (3.14). To see this, note

that there are (n) i-th moments of a n-dimensional binary word, all

of which being independent. Furthermore, it is easy to verify that

= 2n-l
. (3.16)

i=l

Thus, knowing all i-th moments (i = l,...,n) provides exactly the

number of independent statistical measures necessary to completely

specify the zero-order statistics of x.
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Example:
If for n = 2 the three moments plv p*2, and px\X2 are given, the

remaining joint probabilities follow from

«01 =
„I _pii

jTXiX2 "X2 ^XiX2

«o° =
1-p" -pi0, -p°\

rill2 ^XiX2 ^Xiï2 rX\l

which is the pmf p(xi, X2). For any n > 2 the pmf can be constructed

by recursively applying this procedure. D

First-order statistics

The first-order statistics of a n-dimensional binary signal x is uniquely
defined by the pmf p(x(k), x(k +1)), which comprises 22n probability
values. Given all i-th moments as in (3.14) and all lag-one i-th mo¬

ments as in (3.15), p(x(k), x(k + 1)) can be constructed in analogy to

the example above.

To determine the total number of moments M{n) that fully specify
the first-order statistics of x, the following is observed: First, accord¬

ing to (3.16), 2n—1 i-th moments are required to describe x(k). Since

the signal is stationary, the same moments also apply to x(k + 1).
Second, according to (3.16) there are 2n — 1 possibilities of selecting
at least one out of n signals at time k. Hence, the total number of

lag-one moments is (2n —l)2, sine at least one signal at time points k

and k + 1 must be selected, see (3.15). Thus, altogether

M(n) = 2n-l + (2n-l)2 = 2n(2n-l) . (3.17)

M(n) also is the minimum number of values required to fully

specify the first-order statistics of a binary signal. Although

M(n) = 22n - 2n < 22n, the complexity of first-order statistical

analysis remains exponential.

Example:
For n = 2 the pmf p(x(k), x(k + 1)) is constituted of 22'2 = 16 joint

probabilities. Given the 22 — 1 = 3 moments pi , p*2, and px\X2,
as well as the (22 - l)2 = 9 lag-one moments pXliXl, Px\lX2, pl~2-Xl,
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„1-1 T,l-ll r>1-11 T711"1 -n11"1 anrl r)11-11 tlip nmf

iyX2-X2' -TX1-X1X2' -^X2-XiX2' //XiX2-Xi' i^XiX2-X2' Ö,11U- ^XiX2-XiX2 U C rml

p(a;i(A;),cc2(fc),xi(A; + 1),£2(& + 1)) can be derived as follows:

p(llll) = pîî'.ïxx«,
p(1110) = P^-xx-KUll)

P(1101) = P^12.X2-P(11H)

p(1100) = p^X2-p(1101)-p(1110)-p(llll)

p(0000) = 1 - p(0001) - p(0010) - ...

- p(llll) .

D

3.4 Probabilistic Analysis of Combina¬

tional Circuits

This section introduces an exact and an approximate method for

switching activity calculation in combinational logic circuits based

on spectral transformation of Boolean functions. It is assumed that

the logical state switching for all signals in the circuit happens in¬

stantaneously, i.e. the logic gates have zero propagation delay. The

extension to non-zero delay models is possible and will be explained
in section 3.4.5.

3.4.1 Spectral Transform of Boolean Functions

Why use spectral transforms?

Although other approaches to probabilistic activity estimation exist,

see section 3.2.3, the spectral transform approach offers three major

advantages:

1. The arithmetic notation used in some transforms greatly facili¬

tates the application of the expectation operator E[.] compared
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to an analysis based on ordinary logic equations. In particu¬

lar, the arithmetic notation enables the application of the well-

known relation Ü7[X + y] = E[X] +E[Y] for any two random

variables X and Y. This feature is at the heart of our approach.

2. Spectral transformation of Boolean functions results in a canon¬

ical representation. This representation comprises the minimum

number of statistical measures (moments) that fully specify the

relevant statistics of the input variables, see section 3.3.3.

3. As will be seen in section 3.4.3, the spectral transform provides

a means for the efficient approximation of all types of signal

correlation, where a single parameter controls the degree of ap¬

proximation.

Basics of spectral transformation

In general, a discrete function f denotes a mapping / : X —y F,
where X and Y are finite non-empty sets. A switching function is

a discrete function with X = {0, l}n and Y — {0,1}. Commonly, the

term Boolean function is used as synonym for switching function. For

some fixed variable ordering any Boolean function y — f(xi,..., xn)
is specified by a binary (2n, l)-vector / = (/(0),..., /(2n — 1)), which

corresponds to the output column of the truth table associated with

/. The spectral transform of a Boolean function y = /(xi,... , xn)
with associated binary vector / is defined as

B(n) f = a (3.18)

with the (2n, 2n) transformation matrix B{n) being independent of/.
The (2n, l)-vector a = (ao...oo> ao...oi> • • •

» ai...n) is called the spectrum

of f. Given its spectrum, each Boolean function can be expressed as

multivariate linear polynomial:

y= £ ain...h x% ... - x? (3.19)
in-.-ii

where the summation is over all binary vectors in ... i\ G {0, l}n. De¬

pending on the definition of B(n) and the interpretation of (3.19),
the transforms have different names, such as Reed-Muller transform,
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Walsh transform, and arithmetic transform [SF96]. For the activity
estimation algorithm to be presented, only the latter will be of inter¬

est.

Arithmetic transform

In case of arithmetic transform, the transformation matrix B{n) is

recursively defined as

B(n) =

B{n - 1) 0

-B(n-1) B{n-1)
(3.20)

with -B(O) = 1. Thus, in case of arithmetic transform, B(n) in (3.18)
maps the binary vector / to an integer vector a. Addition and mul¬

tiplication in (3.19) then denote ordinary arithmetic operations. For

convenience, the polynomial (3.19) obtained as arithmetic transform

of y = /(xi,..., xn) will be denoted A(y).
Depending on the domain of /, the arithmetic transform may

be further classified: If x» G Z (i = l,...,n) then y G Z. If

Xi G [0,1] (i = l,...,n) then y G [0,1] and (3.19) is also referred

to as probabilistic transform. The vector of coefficients a G Z2 is

identical in both cases and, depending on the domain, is called arith¬

metic spectrum or probability spectrum of /. Naturally, probabilistic
transform and probability spectrum are the relevant forms in the con¬

text of probabilistic analysis of logic circuits.

To show that the probability spectrum a of any Boolean function

/ is unique, it is observed that B(n) (n = 0,1,2,...) is regular, and

hence the inverse matrix B~1{n) exists. Then, the inverse arithmetic

transform

B-t-W-a = f (3.21)

yields a set of 2n linear equations for the elements of a, which can

be obtained by substituting the 2n distinct input assignments of /
and the corresponding output value into (3.19). Since with every

input assignment a new component of a is selected, the 2n equations
are linearly independent. Consequently, there always exists a unique
solution for a = (ao...oo,ao...oi, • • • >ai-n) m (3.21) and thus A(y) is

a canonical representation of /.
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Example:
For n = 2, (3.19) can be written as y = aoo + «oiiCi + «ioa:;2 + «nx2xi.

In case of the exclusive-OR function (xor)

y = /(xi, x2) = (xi A x2) V (xi A x2) = xi 0 x2

the set of linear equations (3.21) becomes

«oo = 0

«oo + «oi — 1

«oo + «10 — 1

«oo + «oi + «10 + «il = 0

which has the unique solution a = (aoo>«oi>«io>«n) = (0,1,1,-2).
Hence, for the two-input XOR holds A(y) = x\ + x2 — 2x2xi. D

In general, A(y) contains 2n terms. Depending on the specific

mapping /, however, some of the components of a are zero. Table 3.1

shows the arithmetic transform for basic Boolean functions.

It should be noted that any arithmetic transform permits two different

interpretations:

1. A(y) represents the logic equation of the Boolean function y =

/(xi,..., xn) in an arithmetic notation, i.e. substitution of logic
values '0' and '1' for the x; (i = 1,..., n) in A(y) yields the logic
value of y corresponding to /.

Name y = /(xi,x2) Ay)

NOT y = x~l y = l-xi

AND y = x1Ax2 y = xix2

NAND y = 1 - xix2y = x1Ax2

OR y = xi V x2 y = xi + x2 - xix2

NOR y = xi V x2 y=l — Xi—X2+ X\X2

XOR y = xi © x2 y — xi + x2 - 2xix2

XNOR y = xi © x2 y = 1 - xi — x2 + 2xix2

Table 3.1: Arithmetic transforms for basic Boolean functions.



Combinational Circuits 31

2. A(y) expresses the probability that the output of the corre¬

sponding Boolean function assumes the logic value '1' given the

probabilities for the individual inputs being '1', i.e. substitution

of Pli (i = 1, • •

•, n) in A(y) yields p\.

3.4.2 Exact Calculation of Switching Activities

Given a topologically sorted logic circuit together with the first-order

statistics of its primary inputs, the goal is to compute the switching

activity ctyj (j = 1,...,#), see figure 3.1. The following algorithm

performs this computation in three major steps, where one of the

three kinds of signal correlation (see section 3.2.3) matters in each

step:

(I) Construct the arithmetic transforms A(yj) (j = 1,..., g) in con¬

sideration of structural correlation;

(II) From A(yj) compute the static signal probabilities py. (j —

1,..., g) in consideration of spatial correlation;

(III) From A(yj) compute the joint probabilities p^.ly. in consider¬

ation of temporal correlation, and combine p\. and pl~.lv. to
y3 y3 yj

obtain the transition activities ayj (j = 1,..., g).

Example:
The subsequent description of steps (I) through (III) shall be eluci¬

dated by means of a small example circuit with periodic input signals
as shown in figure 3.6. The goal is to find the switching activity of

gate 2/3 by means of the above algorithm. From analyzing the binary

output signal the expected result is inferred as 0^3 = 1. D

(I) Construction of A{yj)

Starting at the PI and proceeding in topological order to the PO,

A(yj) for each gate in the circuit is incrementally constructed using
the basic arithmetic transforms in table 3.1. Compound logic gates
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- • -|1 1 1 0|1 1 10;---

•••0 1 10;0 1 10;--

•joo i i;oo 11|--

Figure 3.6: Example circuit with periodic input signals.

are decomposed. In the course of this procedure, structural correla¬

tion of signals arising from reconvergent fanouts are accounted for by

applying the rule of exponent suppression [PM75]:

(xi)ß -» x< for ß>l (3.22)

In other words, signal reconvergence is taken into account by the

idempotence of multiplication in the Boolean algebra.

At the end of step (I) each node of the circuit is described as linear

polynomial of the PI variables. This circuit model is by no means

specific to activity estimation but has also proven useful in the

context of VLSI verification and test [SF96].

Example:
From table 3.1 the arithmetic transforms for gates y\ and y2 in the

example of figure 3.6 follow as A(yi) = xi(l — x2) = x\ — x2xi and

A{y2) — X3X2. For construction of A(ys) the exponent suppression
rule must be applied, since x2 reconverges in y%. Thus, A(yz) =

A(yi) + A{y2) - A(yi)A(y2) = xi - x2xi + x3x2. D

(II) Computation of py.

In this step the statistical properties of the input signals get involved.

Given the arithmetic transform A(yj) the associated static signal

probability py. can be obtained as follows: From the definition of

static signal probability (3.2) one has

Pi = E[Yj] = ElAft)] . (3.23)

Xn s^ 10 10! 10 10--
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This enables the application of the well-known relation E[X\ +X2] =

£7[Xi] + jE[X2] for any two random variables X\ and X2 to decompose

A(yj) as follows:

P

Vi
= E £ Oi ti^n • • • "^l

•îi

«0...00

+a0...oi#[^i] + • • • + «10...0^[^n]

+ao...ouE[X2Xi] + .. • + CLiio...oE[XnXn-i\ +

+a1...11E[Xn...X1]

«0...00

+«0...0lPXl + • • • + «10...0PX„

+Ö0...011PX2X! + • • • + «110...0PXriXn_1

+«i...npXn;1.Xl •

+ ...

(3.24)

The probability values pl1-lpl2, - - - ,pl'n'1..Xl in (3.24) are the ra-th mo¬

ments (m = l,...,n) of the n-dimensional signal at the PI of the

circuit. Substituting these moments into terms with non-vanishing

spectral components yields the static probability py. in consideration

of spatial correlation.

The decomposition process in (3.24) corresponds to finding a

disjoint cover for yj = fj(x\,..., xn) in disjunctive form [MDG+97].
The arithmetic transform provides an elegant solution to this problem

by employing the equivalence of expectation and the probability of

being '1' of a binary random variable.

At this point, the switching activities ayj (j = 1,...,#) could be

computed from py. by virtue of (3.11) which, however, does not

account for temporal correlation of signals.

Example:
Evaluation of A(y3) = xx - x2x1 + x3x2 with p\x = f, p£ =

| and px\X2 = \ yields p*3 = \. The switching activity without

consideration of temporal correlation follows as ay3 = 2py3(l — py3) =

|, which is only half the true value.
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Now consider the disjunctive form y$ = xix2 V x2X3. In order

to apply the expectation operator as in (3.24), i.e. to obtain p*3, the

terms of the right-hand side must be independent. Thus, the terms

must form a disjoint cover for y$, e.g. y$ = xix2X3 Vxix2X3 Vxix2X3 V

Xix2X3. This then yields the correct value p*3 = |. However, this

procedure would in general require all 2n pmf values of the PI signals
to be known. D

(III) Computation of py~ly. and ayj

From theorem 3.1 follows that, in order to account for temporal corre¬

lation at node j, the joint probability p*~*
.

must be known. Contrary
y3 y3

to [CMD97], where polynomial expressions for all four fist-order joint

probabilities (3.5) were incrementally constructed, it suffices to know

pl'ly Moreover, the polynomial expression associated withpy~ly. can

be obtained directly from A(yj ) and does not have to be incrementally
constructed from PI variables. This greatly reduces the computational
burden.

Since pi~L. is the probability of signal yj being '1' at two consecu¬

tive time steps, it can be obtained from evaluating A(yj(k)Ayj(k+l)).
This arithmetic transfrom can be written as

= £ £ *....<iOi...j.(*i)'* • (*î)li(*5+1)'" • (*î+1)ji

tP,jPe{0,l}(r = l,...,n) (3.25)

where for brevity time index k is denoted as superscript. Following
the same procedure as in (3.24), one gets

Py'rvi = ao...oo(«o...oo + «o...oiPXl + • • • + «io...oPxJ + • • •

+«0...0l(«0...00 + «O...OlPx"1lXl + • • • + «10...0Px"i-xJ + • • •

+(«i...ii)2rf:.1;x1;i...Xl • (3.26)

Thus, the expression for p*~*. is comprised of the probability
y3 y3

spectrum corresponding to yj = fj{xi,... ,xn), the ra-th moments

(m = 1,..., n), and the lag-one t-th. moments (t = 2,..., 2n) of the
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PI signal. Evaluation of each non-vanishing term with these moments

Vj-Vj
yields the numerical value for p}'1

Finally, the switching activity in consideration of all three types of

correlation can be obtained from pl~ly. and py. computed in step (II)
by means of theorem 3.1.

Example:
The arithmetic transform of y$ at two consecutive time steps follows

from A(y%) = xi — x2xi + x3x2 as

Âliikiik+1\ - <rkTk+1 - Tk k+i k+i ,
k k+i k+i

_

k k k+i

I JJJ+1J+1
_

kk k+1 k+1 , k k k+1

_Tk k k+1 k+1 , fc fc fc+1 fc+1
S 2 2 1 "^ 3 2^ 2

Evaluation with the corresponding moments yields6

Together with p*3 = | from step (II), this gives the correct switching

activity ay3 = 2(pJ3 - Py:3ly3) = 1. D

3.4.3 Approximation of Signal Correlation

Complexity considerations

The above procedure exactly models all relevant signal correlation.

Its computational complexity with respect to the number of gates
in the circuit is 0(g). However, the complexity with respect to the

number of PI is 0(22n). This is due to a maximum of 2n non-vanishing
terms in A(yj) and the operation in (3.25). Also, as discussed in

section 3.3.3, the number of moments for the PI signals to be stored

is M(n) = 2n(2n — 1). In order to handle large circuits, the following
heuristic for approximation of signal correlation is proposed by the

author [WKFF99]. This heuristic trades accuracy for computational
cost.

Note the direction of time index k in figure 3.6 when evaluating the moments.
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Essential variables

The approximation is applied in step (I) of the exact algorithm.
Assume that the inputs to gate j are named j' and j". Then, prior
to construction of A(yj) the number of PI variables in A(yj") and

A(yj>) is limited to some value d. These d essential variables are

kept symbolically, while all other variables are evaluated to their

respective static probability pi.. Such partial evaluation yields
real-valued probability spectra a.

The evaluation of some variable Xi potentially introduces an error at

subsequent nodes because

a) the exponent suppression rule is violated if paths from PI x^

reconverge,

b) spatial correlation of Xi can not be considered when evaluating

A(yj) or A(y$yk+1), and

b) temporal correlation of xj can not be considered when evaluating

A(y$yk+1).

Thus, the choice of d represents a tradeoff between computa¬

tion/storage complexity and accuracy. With d = 0, the approximation
is equivalent to propagating static probability values, because all PI

variables Xi are evaluated to pi. (i = l,...,n) at the start of the

algorithm. In this case any signal correlation is ignored. The other

extremum, d = n < n, produces exact switching activities, where n

denotes the maximum number of Pis that any gate function depends
on.

Selecting essential variables

The key question is how to select the d essential variables in the two

polynomials A(yj») and A(yy) at the input to gate j, without giving

up the incremental nature of the algorithm. First, variables common

to A(yj") and A(yj>) are chosen such that exponent suppression
can take place correctly. However, reconvergence occurs only at a

fraction of all nodes. In particular, variables that are actually due to

exponent suppression at the current node, might have been evaluated
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already at earlier stages of the algorithm. Thus, a secondary selection

criteria must be found. Experiments showed that random selection

is not a good choice, because estimation accuracy can widely vary

between runs and monotonie behavior with respect to d is not justified.

The generic structure of (3.19) however provides a means for guiding
the selection in consideration of monotonie behavior as follows:

The contribution of term in .. .i\ to A(yj) depends on «^...^ and the

order of that term. By assuming Xi = | (i = 1,..., n), a normalized

probability spectrum à may be defined:

<...n = K...iJ-2-S"^ (3.27)

ir G {0,1} (r = l,...,n). Thus, «^...^ measures the relevance of

term in .. .i\ in A(yj). Evaluation of variables that appear only in

terms of low relevance will introduce a small error if the exponent

suppression rule for those variables is violated at subsequent nodes.

Similarly, neglecting correlation by evaluating variables with their

static probabilities instead of the required moment is less critical for

terms of low relevance.

Based on the above observations, the essential variables in the two

polynomials A(yj») and A(yy) are chosen with the following priori¬
ties:

1. variables that appear in both polynomials;

2. variables from terms with largest ô^...^.

Note that the selection process still contains an element of choice

if terms of equal relevance exist. This non-determinism asks for

experimental verification of the average performance of the proposed
heuristic.

Example:
Consider the arithmetic transform A(yz) = x\ — x2xi + X3X2 of gate

2/3 in figure 3.6. The non-zero terms of the normalized probability

spectrum follow from (3.27): «ooi = f, «on = \, «no — \- If d = 1

essential variables are to be identified, the choice will be x\ which
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yields the approximated transform A(yz) ~ x\ — pl2X\ + p13p12 =

3 + 5*1-
For d = 2, however, either x2 or X3 can be selected as additional

essential variable, since äon = «no- The corresponding approxima¬
tion would be either A(ys) ~ x\ + |x2 — x2xi or A(y%) ~ \x\ + |x3,
yielding different results for subsequent gates. D

3.4.4 Experimental Results and Discussion

The proposed activity calculation algorithm and correlation approx¬

imation scheme have been implemented using a standard symbolic

computation package, in order to validate the following two require¬
ments:

• estimation accuracy increases monotonically with increasing
number of essential variables d, and

• significant accuracy improvements are achieved for feasible val¬

ues of d.

The first requirement shall ensure consistency between runs with dif¬

ferent parameters. The second requirement is necessary because the

number of terms in A(yj ) is 22d in the worst case, if d essential vari¬

ables are kept symbolically in A(yj") and A(yj>).

Experimental results

For the experiments the complete ISCAS'85 benchmark set of com¬

binational circuits and a 32-bit carry-lookahead adder were used. To

express estimation accuracy for individual nodes by means of a single

quantity, the following RMS switching activity error is being used:

RMSQ =

1
TK-»,,)2 (3.28)
5,=i

where ayj is the estimated switching activity of node j, and ay. is

the true value which was obtained from logic simulation of 105 input
vectors.
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Two sets of experiments with different input stimuli were con¬

ducted. The first set assumes random, uncorrelated PI signals with

pli = | (i = 1,... ,n). In this case the approximation involves only
structural correlation. For the second set of experiments correlated

input vectors were used. These vectors were generated by passing
the output of binary counters (temporal correlation) through a logic
network with high fanout of PI signals (spatial correlation).

Table 3.2 shows the RMS error for different values of d. It can be

seen, that with two exceptions (cl908 correlated, cla32 random) the

RMS error decreases monotonically for increasing d. On average, the

RMS error decreases by around 50% if d = 4 essential variables are

identified. Also, substantial accuracy improvements are achieved even

for small values of d. The highest relative accuracy improvement is

observed between d = 0 and d = 1.

For three selected circuits, figures 3.7 - 3.9 show the percentage

of nodes with absolute error of switching activity Ao;^. = \ayj — aVj |
within certain bounds. Each of these plots combines five histograms
over six error intervals. The trend of these histograms again indi¬

cates nearly monotonie behavior with respect to d. Even for circuit

c6288 in figure 3.9, which has been qualified as notoriously difficult

by other researchers due to a immense number of reconvergent fan¬

outs [HYH99], the proposed approximation scheme does not break

down. The monotonie behavior is retained for this circuit, although
at a much higher level of error.
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random inputs

0 < Ace < 0.01

.01<Aa<0.1

0.1 < Ace < 0.2

0.2 < Aa < 0.3

0.3 < Aa < 0.4

0.4<Aa<1.0

correlated inputs

0 < Aa < 0.01

.01 <Aa<0.1

0.1<Aa<0.2

0.2 < Aa < 0.3

0.3 < Aa < 0.4

0.4<Aa<1.0

Figure 3.7: Percentage of nodes vs. switching activity error interval and

number of essential variables (d) for circuit c7552 with random (top) and

correlated (bottom) inputs.
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random inputs

0 < Aa < 0.01

.01<Aa<0.1

0.1<Aa<0.2

0.2 < Aa < 0.3

0.3 < Aa < 0.4

0.4<Aa<1.0

correlated inputs

0<Aa<0.01

.01<Aa<0.1

0.1<Aa<0.2

0.2 < Aa < 0.3

0.3 < Aa < 0.4

0.4<Aa<1.0

Figure 3.8: Percentage of nodes vs. switching activity error interval and

number of essential variables (d) for 32-bit carry-lookahead adder with ran¬

dom (top) and correlated (bottom) inputs.
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random inputs

0 < Aa < 0.01

01<Aa<0.1

0.1<Aa<0.2

0.2 < Aa < 0.3

0.3 < Aa < 0.4

0.4<Aa<1.0

correlated inputs

0<Aa<0.01

.01<Aa<0.1

0.1<Aa<0.2

0.2 < Aa < 0.3

0.3 < Aa < 0.4

0.4<Aa<1.0

Figure 3.9: Percentage of nodes vs. switching activity error interval and

number of essential variables (d) for high-reconvergent fanout circuit c6288

with random (top) and correlated (bottom) inputs.
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Discussion

Compared to existing methods the presented approach has the follow¬

ing advantages:

+ Potentially, all three types of signal correlation, i.e. spatial, tem¬

poral, and structural correlation are accurately modeled. More¬

over, accurate switching activity can be calculated for every

node from the theoretical minimum number of statistical mea¬

sures (moments).

+ For large circuits, the approximation of all types of signal corre¬

lation can be controlled by means of a single parameter. Approx¬
imation accuracy with respect to this control parameter behaves

nearly monotonically.

+ When signal correlations are approximated, incremental pro¬

cessing of the network is still possible and no pre-processing is

required. Thus, the complexity with respect to the number of

nodes g remains 0(g).

These advantages come at the expense of the following critical points:

— The complexity of the algorithm with respect to the approxima¬
tion parameter d is 0(22d). It has been shown, however, that

even for small values of d the estimation accuracy improves sig¬

nificantly compared to mere propagation of signal probabilities

pi. and neglecting all correlations (d = 0).

— The number of statistical measures (moments) to be extracted

from the application data and stored, grows exponentially with

the approximation parameter d. A possible workaround is to

extract fewer moments than the maximum allowed value of d

would require. In this case, different degrees of approximation
would apply to structural correlation and spatio-temporal cor¬

relation of input data.
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3.4.5 Extension to Multi-Delay Model

Discrete-time switching

In practice, signals do not propagate instantaneously through the

circuit but are afflicted with time lag due to gate and interconnect

delays. This time lag provokes spurious signal transitions (glitches)
in the circuit that are not necessary from a purely functional point of

view. Typically, activity due to glitches is about 10-25% of the total

switching activity [GDKW92]. However, for particular circuits such

as multipliers, glitching might contribute considerably more.

For consideration of glitches in gate-level activity estimation, a multi-

delay model is commonly assumed [DTP98, MDG+97]. Under this

model, the delay time associated with each gate is a multiple integer of

some fixed time unit A. This implies that signal switching is modeled

to occur only at discrete points tlk during the computation interval

Cl-

lk = kTci-rl-A (l = 0tl1...1lma) (3.29)

At time points kTci (k = 0,1...) corresponding to the active clock-

edge, new data samples arrive at the Pis. Ij^x - A is the maximum

delay. A condition to ensure correct functionality of the circuit is:

/ A < T
'"max1-* ^ J-ct-

x(:*)

*A.

x(k

i

+ 1)

i

lk

•max 1 2 J • • • 'max 1

kT<
Cl (k+l)Tci

Let a1. be the switching activity of signal yj at time points tlk. The

total switching activity of gate j during one computation interval is

then given by

a
Vi

= E«i

Vi

1=0

Ü = 1,...,0) (3.30)
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The switching activities aly. (I = 0,1,..., Imax] 3 — 1> • • •

> 9) can

be calculated in a straightforward manner by extending the zero-delay

procedure described in section 3.4.2. Moreover, provided that the Pis

Xi (i = 1,..., n) change their logical state no more than once during

any computation interval, the switching activities aly. are explicitly
defined by the same M(n) = 2n(2n — 1) moments of the PI signals
that were required in the zero-delay case.

The necessary adjustments for the activity calculation procedure
from section 3.4.2 shall be described next. Without loss of generality it

is assumed that PI signal switching occurs at times kTci (k = 0,1,...).

Extension of zero-delay procedure

Step (I)
Gate j potentially switches at times tlk if the circuit contains a delay

path of length I from any of the Pis to the output of j. This set of

potential switching points Lj C {0,1,..., l-max] is given as union of

the set of switching points of the precursor nodes of gate j, offset by
the delay time of gate j. For I ^ Lj holds aly. = 0.

For each l Lj, an arithmetic transform A(ylj) is constructed from

those precursor node transforms that are relevant for the transition of

gate j at time I. Unlike under the zero-delay model, the PI variables

now must be time-labeled, since PI samples from the previous (k —

1) and current (k) computation intervals may appear in the same

arithmetic transform.

When constructing A(yl„;), variable Xi in the polynomial at some

input of gate j has label k — 1, if the delay path from Xi via this gate

input to the output of gate j is longer than I. Otherwise, Xi has label

k. The exponent suppression rule (3.22) applies only to variables that

refer to the same time point. The arithmetic transform that refers

to the last switching point of gate j is identical to the one under the

zero delay model, i.e. all variables in this transform are consistently
labeled with either k — 1 or k depending on whether yj refers to the

final value of the previous or current computation interval.
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Step (II)
For each l G L3, the static probability p1l of signal y3 at time point I

is obtained from evaluation of A(yl3). As opposed to the zero-delay

model, the static probabilities p1l this time may depend on lag-one

moments of the PI signals, since time labels k — 1 and k had to be

assigned to PI variables in step (I).

Step (III)
For each / G L3 the arithmetic transform A(yl~1ylJ) = A(y ~1)A(ylJ) is

constructed such as to reflect the correlation between adjacent switch¬

ing time points of gate j. For the first switching time point I, A(y _1)
corresponds to the last switching time point of the previous compu¬

tation interval, i.e. in A(y
~

) all variables are labeled with k — 1.

Evaluation of A(y
~

yl„) with the corresponding PI moments yields

PX~i-i i
•
From this, and the static probabilities p1l_1 and p1l corre¬

sponding to time points Z — 1 and /, the switching activity of gate j
at time point l G L3 follows as7

I
- „i-o , _o-i

y3
~

Py^-yi
+ Py^-y1

»—-L
„-.

i-~ J. i ««.
J. „J-- J-

-

PyT'-Py'rW,
+ P«',

~

Py'r'-y',
3

P^+pJ.-2-p^, • (3.31)

7Under the same timing model (3.29), in [SP00] a different formula for the

probability of switching from '0' at time point / — 1 to '1' at time point I has been

derived in analogy to (3.10). In our notation this formula goes

^-yrply'r'(1-pk){1-Q^;)
where o j_i is the correlation coefficient of the random variables associated

"3 3

with time points I — 1 and /, see (A.8). The above formula bases on the incorrect

assumption that p°7ii
,
= P^i-i ,

• Although this holds if y,_1 and y{ refer to

v, -y3 y3 ~y3
J

consecutive samples of a stationary binary signal, see proof of theorem 3.1, this

assumption is fallacious under a multi-delay model. In this case, y
_1

and yl do

not refer to a stationary signal, because in general p1,_1 ^ p1,.
Vj y3
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The diagram below elucidates (3.31) for Lj = {2,3, 5}.

pyf-y; pyf-yf
P1'

yyf-
1

y]

À

T ITT

5 2 3

Py5 fcTrf Py2 PyJ

5

(*+i)7d

If gate j can switch only at a single time point, p1l_1 = p1l = pi
Vi

and pili j
= Py.Zy.- In this case, (3.31) is identical to the switching

activity (3.9) under the zero-delay model.

Example:
Consider again the example circuit in figure 3.10 and assume gate y\

has a propagation delay of 2A, and gates y2 and y% a delay A. Thus,
the set of potential switching time points of gate y$ is L3 = {2,3}.
The arithmetic transform for y$ at time point 1 = 2 follows as

AÛ) = Ayt1) + A(yk2) - A(yk1-1)A(yk2)
.fc-i
xl x2

,k-l k-1
,

k k
_

(„k-1
_

k-1 k-l\ k k
ju-t \^ JuoJbo v 1 2 1 / 3 2

and the corresponding static signal probability is

n1*
= n1 -r>U + r)11

- r)1"11 + n11'1'-
"yï rx\ yx2X\ ' I'xzXl rx\-XzX2,

'
rx-2X\Vs X3X2

Note how the static probability depends on the first-order statistics

of the Pis.

;1 1 1 0;1 1 1 Ol¬

io 1 io|oi 1 oj-

io 0 1 lioo 1 ii-

X,

2A

A 7^y>- 1 0 1 011 0 1 0!

Figure 3.10: Example circuit with gate delays.
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The arithmetic transform at the last switching point I = 3 is equiv¬
alent to the zero-delay transform for yy.

A(y\) = xi — x2xi + X3X2 -

In step (III), depending on whether yf refers to the previous or current

computation interval, the variables in A(y\) are labeled with k — 1 or

k as follows: p1^1 2
is obtained from evaluation of

A(yly2z) = A(yl)\k-1 A(y2)
-

J-l.J-l>1, J-1J-1U
Jb-i «-I/O Jb-t \^ JbO *l/0 t*J'3**''2 *

a-i
p 2 3

is obtained from evaluation of
3/3-3/3

Ami) = Avi) - Avi)\k
-

~k-i k
_

k-i k-i k
_

k-i k k
— Jbi U/-1 U/o Js-t Uj-t Jb-t dj<yJL/-\

-\~X>2 X-t XnX-t -\- X0X2 •

Note that in general p1^1
2

7^ P1^1
3 as well as p12 ^ p13.

&
^2/3-2/3

^
M/3-2/3 M/s

^ ^3/3

Finally, the switching activity of y$ under a multi-delay model follows

from (3.30) and (3.31) as

ay3 — ay3 + a2/3

= 2<2 + pk ~ plt-yl ~ Pfrvl ) •

For the periodic input sequence shown in figure 3.10 this evaluates to

ayz = 1, which is easily verified with logic simulation. Interestingly,
in the present case zero- and multi-delay model result in the same

switching activity of gate y% although there is one additional switch¬

ing point under the multi-delay model. D

The correlation approximation scheme proposed in section 3.4.3 may

be applied equivalently under the multi-delay model. However, for the

selection of essential variables in A(ylj) time labels shall be ignored,

i.e. Xi~l and xk represent the same essential variable.
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Glitch filtering

For the given timing model, the above procedure exactly calculates

the switching activity for every gate in a combinational circuit. How¬

ever, discrepancies compared to gate- or transistor-level simulation

with detailed timing capabilities can occur due to the abstract model

employed. In particular, the multi-delay model ignores the effect of

inertial delay on the switching behavior of logic gates, resulting in

overestimation of switching activity [MDG+97, DTP98]. Due to non¬

zero charging/discharging time of internal capacitances, a signal tran¬

sition at the gate input will only cause a transition at the gate output,

if the new input values remain stable for a sufficiently long period of

time. Short-pulse glitches will not pass through the gate.
In order to account for this effect, a glitch filtering scheme has been

proposed in [DTP98], which suppresses output pulses that are shorter

than the delay time of the gate. A similar approximation could be

incorporated into the above procedure by weighting a switching time

point l\ of gate j that is subject to suppression through the next

time point I2 with some probability of occurrence. This occurrence

probability is determined by the Boolean function of gate j and p1, ,

P i2i P ii i2-

3.5 Probabilistic Analysis of Sequential
Circuits

3.5.1 Feedback Circuits

Sequential circuits contain memory elements and either implement re¬

cursive or nonrecursive computations depending on whether the mem¬

ory elements are located in feed-back or feed-forward signal paths.
For sequential circuits without feedback, switching activity informa¬

tion for the combinational blocks can be obtained as explained in

section 3.4. However, activity calculation for circuits with feedback

requires the statistical properties of the feedback signal to be known,
see figure 3.11(a). Such feedback circuits are usually viewed as finite-

state machines (FSM), by regarding the current feedback value s(k)
as the state of the system.
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x(k)-ï+ Combinational
m

s(k)
m Circuit /

z-1

x(k)

s(k)

x=l

£>

A

m

x=0

x=l, x=0

(a) (b)

Figure 3.11: General logic circuit with sequential feedback (a), and ex¬

ample schematic with associated state-transition graph (b).

In case of feedback, the combinational circuit has an extended set of

input signals x formed of primary inputs x and state signals s, i.e.8

X — \xli • • •

-, xm &l-i • • •

i Sm) •

If there are m state signals, the system has a total of 2m states.

The sequential feedback

«(fc + 1) = y(k) =f(x(k),s(k)) (3.32)

introduces a new form of signal dependency, which manifests itself in

spatio-temporal correlation of the extended input signal x.

In analogy to (3.14) and (3.15), the i-th moments

rxjx Xji
(i = 1,.. .,n + m)

and the lag-one i-th moments

a-1"1-1 (i = q + r = 2,..., 2(n + m))P.X-l ...X-l-X -2-..X.2

(3.33)

(3.34)

8Without loss of generality it may be assumed that all m primary outputs of

the combinational circuit yg-m+i,... ,yg are state signals, see figure 3.1.
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for the extended input x are required for exact calculation of gate

activities. Moments that exclusively comprise primary inputs Xi (i =

1,..., n) are assumed to be known a priori. All other moments, which

refer to any of the state signals Si (i = 1,..., m) need to be determined

prior to activity computation.

3.5.2 Analysis via Spectral Transformation

Explicit calculation of the unknown moments in (3.33) and (3.34),
and hence switching activity, is a non-trivial task. The problem
can be attacked by using the same technique that was utilized for

switching activity calculation for combinational circuits in section 3.4,
i.e. spectral transformation of Boolean functions. Since the general
mathematical notation for the derivation of the unknown moments

in (3.33) and (3.34) becomes very bulky, the basic concept shall be

indicated by means of the example shown in figure 3.11(b).

First, the arithmetic transform of the next-state function s(k + 1) =

x(k) V s(k) is constructed. For brevity, time index k will be denoted

as superscript. This yields (3.35), see table 3.1, which involves a

second unknown term xksk. Equation (3.36) corresponding to this

term is constructed as arithmetic transform of x(k) A s(k). This in

turn introduces two other unknown terms skxk+1 and xkskxk+1, for

which equations are formed in (3.37) and (3.38). This process would

need to be continued indefinitely.

sk+1 = l-xk-sk-rxksk (3.35)

xk+isk+i = xk+i _ ^fc+i _ ^fc+i + xkskxk+i (3>36)

sk+lxk+2 = xk+2 _ xkxk+2 _ skxk+2 + xkskxk+2 (3>37)
„k+1 k+1„k+2

_
k+1 k+2

_

k k+1 k+2

-skxk+1xk+2 + xkskxk+1xk+2 (3.38)

Applying the expectation operator in the same manner as in sec¬

tion 3.4.2 and assuming stationary primary inputs and hence sta¬

tionary state signals, the above set of arithmetic transform equations
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corresponds to the following equations for moments:

Pi = ^-Px-PÏ+Pxs

fxs
=

pi
_

pl-1
_

pl-1 + pll-1
fx fx-x fs-x ' fxs-x

fs-x
=

pi
_

pl-1
_
pl-1 + pll-1

fx fx-x fs-.-x ' fxs-.-x

pll-1
fxs-x

=
1-1

_

1-1-1
_

1-1-1
+

11-1-1

fx-x fx-x-x fs-x-x ' fxs-x-x

(3.39)

(3.40)

(3.41)

(3.42)

As can be seen, moments referring to more than two consecutive time

points get involved, e.g. px~}x~}x- In general, the above set of equations

may be solved, if temporal correlation of the primary input x is con¬

fined to a given number of time steps. In appendix C, this solution is

worked out for first-order correlation, i.e. only pi and px~_x are given.
To obtain information on the temporal correlation of s, e.g. the

first-order moment pli], a set of equations similar to the one above

can be constructed, see the example in appendix C. Note that even

if the primary input x is temporally uncorrelated, state signal s in

general is not, i.e. p]:] / p\p\.
In the above example, the circuit has only one primary input and

one state signal. The extension to circuits with multiple inputs and

state signals is possible in a straightforward manner, by replacing x

and s in the above analysis by vectors x and s. In this case, spatial
correlation between primary inputs can be acknowledged with the

corresponding exponential increase in complexity, see section 3.3.3.

3.5.3 Markovian Analysis

Traditionally, a feedback circuit, or FSM, has been modeled as Markov

chain [HMPS96, T+95, CSY96, GDKW92] ,
such that

Pr{sk+1\sk,...,s0} = Pr{sk+1\sk} (3.43)

for all possible state values s of the system. In this case, the circuit's

behavior is determined by specification of all (2m)2 state transition

probabilities Pr{sk+1\sk}, see appendix A. These transition proba¬
bilities result from the static probabilities of the primary input signals

pi. (i = 1,..., n) (or their joint probabilities p(xi,..., xn) if spatial
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correlation is acknowledged), and are associated with the edges of

the state-transition graph of the system. For the example circuit in

figure 3.11(b) this model is shown below.

1

Since with the above model the memory of the system reaches back

only one time step, (3.43) also is called lag-one Markov chain. Such a

model, however, totally neglects temporal correlation in the primary

input x. Thus, in the context of data statistics (3.43) only represents

an approximation, although this is often ignored [T+95, GDKW92].
To correctly model feedback circuits for arbitrary input data statis¬

tics, the concept of higher-order Markov chains must be employed

[MMP99]. Formally, the following result is presented.

Theorem 3.3

Assume a circuit with sequential feedback as in (3.32). If temporal
correlation in the primary input x extends over r time steps, then

state signal s forms a lag-(r + 1) Markov chain, i.e.

Pr{sk+1\sk,sk-\...,s0} = Pr{sk+1\sk,...,sk-T} . (3.44)

Proof: The proof is outlined for r = 1 (first-order temporal correla¬

tion of primary input) and the example circuit in figure 3.11(b), since

spatial correlation is immaterial here. Assume that state s advances

as indicated by dashed lines in the trellis diagram below.

x(k-l) x(k)

s(k-l) s(k) s(k+l)

Under a lag-one Markov chain model the probability for the next state

only depends on the static signal probability of x if the present state
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is fixed, e.g. Pr{sk+1 = l\sk = 0} = Pr{xk = 0}. Under a lag-two
Markov chain model the probability for the next state depends on the

one-step conditional probability of x if the present and previous states

are fixed, e.g. Pr{sk+1 = l\sk = 0,sk~1 = 0} = Pr{xk = O^"1 =

1}. Since r = 1, in general Pr{xk — 0} ^ Pr{xk = 0|xfc_:L = 1}
and hence Pr{sk+1\sk} ^ Pr{sk+1\sk,sk~1}, which contradicts the

lag-one Markov chain model (3.43).
On the other hand, modeling s as lag-three Markov

chain is not necessary, because for r = 1 follows that

Pr{xk\xk~1} = Pr{xk\xk~1,xk~2} and hence Pr{sk+1\sk,sk~1} =

Pr{sk+1\sk,sk-\sk-2}. M

Thus, in the context of switching activity calculation, modeling a

circuit as lag-one Markov chain will result in erroneous moments

pIiPHiPI-si • • •
if the primary inputs are temporally correlated. This

in turn induces an error on the switching activity of the gates in the

combinational part of the circuit. It has been found that this error

can exceed 100% depending on the specific circuit structure and input
correlation [SK96]. In appendix C the discrepancy between a lag-one
and a lag-two Markov chain model is exemplified for the circuit in

figure 3.11(b).

3.5.4 Implications

At this point the following implications can be formulated:

• The conventional Markov chain model for feedback circuits is

applicable only in case of uncorrelated primary input signals.
For correct modeling of correlated input sequences, higher-order
Markov models are required.

• The arithmetic transform approach provides a means for explicit
calculation of switching activities in feedback circuits under a

higher-order Markov model. Unlike in combinational circuits,
where moments of the primary inputs up to lag-one are sufficient

for exact analysis, feedback circuits require the knowledge of

moments up to lag-r if temporal correlation in the input signal
stretches over r time steps.
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An approximation technique similar to the one examined for

combinational circuits in section 3.4.3 is conceivable for the es¬

timation of state signal statistics. This would require an appro¬

priate selection procedure for relevant terms in sets of equations
such as (3.35)-(3.38). In practice, one resorts to logic simulation

in order to infer the statistical properties of the state signals as

well as gate switching activities. In this case, compact input
stimuli are desired that closely resemble the relevant statistical

properties of the target input signal [MMP97].

3.6 Summary

This chapter was concerned with the probabilistic analysis of switch¬

ing activity for average power estimation. We have provided the theo¬

retical basis for exact calculation of switching activity in logic circuits

by bridging known concepts from two different disciplines: The nota¬

tion of moments of a random variable known from probability theory,
and the concept of spectral transformation known from the theory
of switching functions. Based on this theoretical foundation, a novel

heuristic for the approximation of signal correlation in combinational

circuits has been proposed.

Our work improves the state of the art for probabilistic activity
estimation in combinational circuits [MDG+97, CMD97, MMP98] as

follows :

• The proposed exact technique accurately models structural, spa¬

tial, and temporal correlation, where each step of the procedure
is dedicated to one of these three types of correlation. Such ex¬

act technique is not only of theoretical interest but is also useful

for calibrating approximation techniques.

• Contrary to [CMD97], where polynomial expressions for all four

fist-order joint probabilities were incrementally constructed, we

have shown that it suffices to incrementally construct one poly¬
nomial for each node. From this polynomial the correct joint

probabilities, and hence switching activity for every node can

be derived.
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• Under a zero- and multi-delay model, the gate switching activ¬

ities in a combinational circuit can be calculated exactly from

the minimum number of statistical measures that fully specify
the first-order statistics of the primary inputs.

• The proposed estimation scheme provides control over the ap¬

proximation of all three types of correlation by means of a sin¬

gle parameter. The new estimation scheme requires no pre¬

processing of the network and retains incremental processing.
The monotonie behavior and effectiveness of this approximation
method have been verified experimentally.

Furthermore, it was demonstrated how the arithmetic transform tech¬

nique also can be used for explicit analysis of circuits with sequential
feedback. In this case, higher-order correlation of inputs can be taken

into account.
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Chapter 4

Data Statistics and

Minimum Power

Dissipation

4.1 Introduction

4.1.1 Motivation

As has been seen in the previous chapter, power consumption in dig¬
ital VLSI is subject to the statistical properties of the application
data at hand. Given a gate-level circuit and sufficient information

on the data characteristics, switching activity and power dissipation
can be predicted. Another question arising in this context is the ex¬

istence of an absolute lower bound on switching activity and power

dissipation subject to statistical data properties. Although related to

power estimation, this lower bound problem differs in that it asks for

the amount of energy indispensable for the completion of some given

computational task. Unlike in power estimation, the lower bound

shall account for data statistics without assuming any specific net¬

work structure.

Besides its theoretical significance such a lower bound would also

provide useful guidance for practical low-power design. Knowing the

59
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minimum dissipation achievable for certain operations would allow to

rate the energy efficiency of state-of-the-art implementations for these

operations. Implementations with poor energy efficiency should then

be prime candidates for future optimization efforts.

4.1.2 Previous Work

Thermodynamics of computation

The relation between entropy and the second law of thermodynamics

on one hand, and the physical limits of computation on the other

hand, has challenged researchers for many decades [LR90, Hey99].
Despite its long record in the history of science, the topic has remained

a controversial subject among physicists. Its pervasive consequences

even fuel philosophical debates and speculations [KS99]. Section 4.2.3

shall discuss the relation between the thermodynamics of computation
and minimum power consumption in VLSI.

Information-theoretic approaches

Next to thermodynamic entropy, the concept of information-theoretic

entropy [CT91] has also been employed to investigate the limits of

computing. One such approach is the notion of computational work,
which equals the entropy of the computation's output sequence, mul¬

tiplied by the number of possible input symbols [Hel72]. However,

computational work is invariant with respect to data statistics, since

it assumes uniformly distributed input data.

Given the information-theoretic entropy of a sequence of symbols,
lower and upper bounds on the switching activity of a binary represen¬

tation of this sequence have been derived in [RSH99b]. In section 4.5,

this result will be employed for the analysis of minimum power con¬

sumption in the context of data transmission.

In [Sha97], the problem of minimum power consumption in digi¬
tal VLSI has been investigated in analogy to Shannon's joint source-

channel coding theorem [Sha48]. This approach will be discussed in

section 4.7, and classified according to the problem hierarchy to be

developed.
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Technology limits

Despite ongoing research for alternatives, e.g. quantum information

processing [SROO] or low-temperature superconducting ICs [BTROO]),
to date MOS-transistor based VLSI, and here predominantly CMOS1,
has remained the implementation technology of choice for virtually

any application manipulating time-discrete digital data. For volume

production, this is not expected to change for at least the next 10 to

20 or so years.

Opportunities for future gigascale CMOS integration were thor¬

oughly analyzed in [Mei95] by considering theoretical and practical
limits at different levels of hierarchy: Fundamental limits are inferred

from the basic laws of thermodynamics, quantum mechanics, and elec¬

tromagnetics. Material limits are dictated by microscopic properties
of Si, such as carrier mobility and saturation velocity. Device limits

for MOS-transistors are given by the minimal channel length. Apart
from technological feasibility, channel length is confined by transistor-

internal short channel effects. Circuit limits refer to requirements that

must be met by logic gates and interconnects in CMOS designs, and

are linked to the power-delay product of a single switching event. On

the system level, switching energy limits are imposed by heat removal

and cycle time requirements.

For a given delay, the limits on power consumption were found to

be more restrictive the higher one moves up in the hierarchy [Mei95].
However, statistical data properties were not taken into account in

this analysis. This shall be done in this chapter.

4.1.3 Outline

Since the choice of implementation medium determines the role of

data statistics for power minimization, this issue is discussed first

in section 4.2 for CMOS. The problem of lower bounds on power

dissipation in the context of data statistics will be formulated and

classified in section 4.3. Subsequent sections then deal with the four

subproblems resulting from this classification. Section 4.8 compares

1 Different logic styles are being used in conjunction with CMOS technology.
In what follows, the term CMOS will imply static CMOS logic.
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the lower bound problem with the information-theoretic transmission

bound problem.

4.2 The Limits of VLSI Technology

4.2.1 The Ideal MOSFET

For minimum power consumption in the context of data statistics, it

is of interest to explore the minimum dissipation associated with a

binary switching event. This shall be done at the device level, since

MOS transistors are the basic devices in CMOS technology.
The energy stored on the gate capacitance of a single MOSFET

in a CMOS inverter is

Eg = QgVdd/2 .

This amount of energy is dissipated for every switching of logic state,

represented by the gate charge. The minimum possible gate charge is

one electron: Qg = q. Approximating the minimum allowable supply

voltage for a simple inverter circuit as [MDOO]

Vdd = 2(\n2)kT/q « 36mV
,

the ideal MOSFET dissipates a minimum energy of

E0 = (ln2)kT (4.1)

for every binary switching transition2. At room temperature this

amounts to

#o « 3 • 10-21 J @ 300 K
. (4.2)

Such a device that only stores a single electron in its gate capac¬

itance when being charged has been named SETE (single electron,

thermal excitation) MOSFET [MDOO]. It should be noted that this

is a hypothetical device that ignores many practical aspects such as

layout parasitics and technology imperfections.

2Here, k « 1.38 • 10_23J/K is Boltzmann's constant and T is the absolute

temperature.



The Limits of VLSI Technology 63

4.2.2 Technology Trends

Table 4.1 compares several CMOS standard-cell libraries available to¬

day to the SETE MOSFET. Lmin denotes the minimum feature size

(= MOS transistor channel length), and Vdd is the supply voltage.
The gate capacitance Cg is derived from the input capacitance of

a standard inverter with lx-drive, assuming a ratio of two for the

p/n-channel widths. Gate charge Qg = VddCg is given as number of

electrons. The energy dissipated per switching event Esw

is given in units of fundamental energy limits Eq in (4.2).
c,va/2

As can be seen, even the most advanced technology dissipates four

to five orders of magnitude more energy than the theoretical limit

would imply. This is in compliance with experimental data provided

in [KeyOl]. On the other hand, the number of electrons stored in a

transistor gate is surprisingly small already. However, extrapolation

of figures from table 4.1 to speculate about the future trend and when

the theoretical limit will be reached is notoriously difficult.

Library J-'min Vdd Cg Qg E

Name Vendor [nm] [V] [aF] fee] [Eo]

CXB AMS 800 5.0 12'000 375'000 5.2 • 107

CUB AMS 600 5.0 lO'OOO 312'500 4.3 • 107

C075 Philips 350 3.3 3'000 62'000 5.7 106

C050 Philips 250 2.5 2'000 31'250 2.2 • 106

CM0S18 Philips 180 1.8 1'500 17'000 8.5 • 105

SA-27a IBM 150 1.3 1'075 8'750 3.2 • 105

Cu-llb IBM 110 1.0 330 2'000 5.8 • 104

SETE [MDOO] 14 0.04 4.47 1 1

"nominal Vid=1.8V, 6rluminal /dd=l-2V

Table 4.1: CMOS technology trend in terms of number of elementary

charges stored on a single gate capacitance, and energy dissipation per

switching event.
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4.2.3 VLSI and Thermodynamics

Thermodynamic results

In his 1929 paper [Szi29] Szilard introduced his famous one-molecule

model of a thermodynamic system. The so-called Szilard engine

for the first time linked the concepts of entropy, information and

memory and led to the notion of a "bit" of information. In this

way, Szilard's work provided the foundation for Shannon's theory

of information [Sha48], which will be the starting point for the

discussion in section 4.7.

Another important milestone in the development of today's under¬

standing of the physics of computing is the work of Landauer and

Bennett. Before their work it was believed that any computer operat¬

ing at temperature T must dissipate at least (hi2)kT Joule for every

"elementary act of information". This is exactly the energy limit (4.1)

previously derived for CMOS.

In [Lan61] Landauer introduced the concept of logical reversibility

and argued that logical irreversibility implies physical irreversibility,

which is accompanied by heat dissipation. This follows from the

fact that a logically irreversible operation would otherwise be able

to decrease the thermodynamic entropy of the computer's memory

without a compensating entropy increase elsewhere in the universe,

thereby violating the second law of thermodynamics. Subsequently,

any logically irreversible operation, such as the mapping of an

unknown, randomly chosen state to a known successor state, must

dissipate a minimum amount of energy. On the other hand, compu¬

tation steps that do not discard information can be done reversible in

principle. Today, this fact is known as Landauer 's principle [BGL+98].

Bennett [Ben73] expanded Landauer's idea, arguing that every com¬

putation step can be made in a logically reversible manner. Thus,

erasure of information is not essential to computing. Adopting this

conclusion, many thought experiments to construct computers with

arbitrary little dissipation have since been performed, including re¬

versible logic (Fredkin) gates, the frictionless billiard-ball computer,

Brownian and enzymatic Turing machines [BL85]. These models give
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evidence to the fact, that the laws of physics do not preclude the inven¬

tion of a technology that allows dissipationless computing. However,

they do not provide a practical design procedure for such a machine.

Adiabatic logic

One approach to "dissipationless" computing based on MOS transis¬

tors, called adiabatic logic, emerged in the early 1990's [CB95]. This

approach dispenses with constant-voltage charging of capacitances as

done in ordinary CMOS. In analogy to thermodynamics, the defining

property of "adiabatic" logic is the dissipation decrease with increased

time allowed for the completion of the charge transfer process. This

requires time-varying supply voltages as well as special circuit styles.

However, fully-adiabatic processing can only be achieved by using

gates that implement invertible functions exclusively, i.e. by restric¬

tion to reversible logic in the sense of Bennet [Ben73]. The overhead

induced by reversible logic can be avoided by resorting to partially-

adiabatic designs. In this case, dissipation involves a non-adiabatic

component, which can not be decreased by slowing down the charge

transfer process.

Although feasible in principle, the complicated circuitry and the

resonant power supplies required, have largely prevented adiabatic

logic from being commercially used to date.

Hierarchy of dissipation limits

As minimum feature size of VLSI technology continues to shrink,

energy dissipation per binary switching event diminishes. If todays

CMOS technology could be advanced to the SETE level, every switch¬

ing event, whether associated to a logically irreversible operation or

not, would dissipate Eq Joule independently of the time allowed to

complete the switching. Further reduction is impossible because of

the basic concept of information representation and manipulation, i.e.

constant-voltage charging and draining of capacitances.

If one is to break the i£o-per-switching barrier at room temper¬

ature, one will be forced to use an implementation technology that

dissipates no energy for logically reversible operations (Landauer's
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Figure 4.1: Evolution of energy dissipation limits.

Principle)3. If one then is to reduce energy dissipation beyond Eq per

bit of information discarded, one will be forced to compute in a logi¬

cally reversible manner using an appropriate implementation medium.

However, zero energy dissipation can only be reached asymptotically

if the time for completing a binary switching event is allowed to go

to infinity. Figure 4.1 illustrates the evolution of minimum energy

dissipation.

4.2.4 Implications

At this point, the following statements can be made:

• CMOS technology in conjunction with constant-voltage charg¬

ing and draining of capacitances imposes a i?o-per-switching
barrier on minimum energy dissipation.

3Decreasing T below room temperature is another potential which, however, is

not feasible in most practical situations.
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• Consequently, from the energy efficiency point of view, CMOS

with constant supply voltage is a suboptimal implementation

technology since it does not obey Landauer's principle.

• Since with CMOS technology every switching event is accom¬

panied by energy dissipation, the number of those events shall

be reduced to the absolute minimum necessary. This motivates

the question of a lower bound on switching activity for a given

processing task. In section 4.3 this question will be formalized

in the context of data statistics.

4.3 Taxonomy for Lower Bound Problem

In this section, the power dissipation bound problem will be formu¬

lated as abstract mathematical optimization problem in order to in¬

troduce a consistent classification scheme. This taxonomy shall help

to comprehend the issue, and allow for categorization of existing ap¬

proaches to solve the problem.

4.3.1 Problem Formulation

Let the implementation technology be CMOS with fixed process pa¬

rameters. Then, in the light of data statistics, the lower bound prob¬

lem (LBP) for low-power digital VLSI is stated as follows:

"A digital operation is to be performed on a set of input data

items with specified statistical properties in a given amount of

time. What is the minimum energy any implementation of this

processing task must dissipate?"

Since the processing time is fixed, minimum energy dissipation is

equivalent to minimum average power. Therefore, the terms energy

and power may be used interchangeably.

In order to arrive at a mathematical formulation of LBP all parameters

that affect power dissipation need to be identified. These parameters

are:
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1. the digital operation4, denoted T

2. input data statistics, denoted Pr{.}

3. the processing time5, denoted Tp

4. the RT-level architecture6, denoted Aj^j

5. the binary data representation, denoted B{.}

6. the gate-level architecture, denoted A^o.

7. the supply voltage level Vdd.

Hence, the power dissipation function P may be written as:

P = P(T,Pr{.},TP,Am,B{.},A^,Vdd) . (4.3)

The seven variables in this function are mutually dependent and con¬

struct an entangled relation for power dissipation.
For the lower bound problem the variables in (4.3) may be divided

into two groups:

given input parameters : T, Pr{.}, Tp

free optimization variables : A^, B{.}, A^, Vdd .

The three input parameters jointly define a processing task, which

shall be performed on a digital circuit. Note that input data statistics

are an integral part of the design specification for such a circuit.

For a specific problem instance of LBP the input parameters are

given. The goal is to find the minimum power dissipation for any

combination of the optimization variables:

P(Am,B{.},A^,Vdd) — Min
. (4.4)

4In the present context, the term operation will always refer to a time-discrete

digital-valued algorithm.
5Without loss of generality it is assumed that Tp is the processing time for one

input data item
6 It is assumed that with the RT-level architecture all other high-level imple¬

mentation options are defined. These options include the data acquisition scheme

(synchronous/asynchronous), the data processing scheme (serial/parallel), and the

operation frequency which is chosen such as to comply with the required processing

time Tp.
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Solving this optimization problem provides the lower bound on power

dissipation for specific T, Pr{.}, and Tp, and also the settings of the

optimization variables that achieve this bound.

The problem is, that in order to solve (4.4), an analytical expression

for P is required. For voltage level Vdd and processing time Tp the

relation to power consumption may be stated explicitly. T, Pr{.},

A|0j, B{.}, and Ar» are, however, difficult to cast in mathematical

formulas. Such formulas not only would need to describe the rela¬

tion to power dissipation, but also must reflect the interdependence

of variables. This makes the analytical treatment of LBP a rather

unpromising undertaking and simplification of LBP seems indispens¬

able.

Such simplifications can be attained by regarding some of the opti¬

mization variables as input parameters. Fixing different combinations

of optimization variables to given values results in a classification of

LBP. As will be seen, this classification naturally follows from making

certain assumptions on the operation T and data statistics Pr{.}.

4.3.2 Representation of Digital Operations

Any digital operation T may be written as

o(k) = T(i(k),i(k-l),...,i(k-oo),o(k-l),...,o(k-oo)) (4.5)

where i(k) and o(k) denote the present input and output value, re¬

spectively. In order to tackle LBP, a more precise specification of the

operation V is required. This specification will bear the first simplifi¬

cation of the problem.

FSM representation

The processing functionality of any digital VLSI system, including

those that implement DSP algorithms, may be modeled as a finite-

state machine (FSM). The most general form of an FSM, i.e. a Mealy

automaton, is depicted in figure 4.2(a). J, O, and S denote the set of

input, output, and state symbols, respectively. The current state of

the system s(k) is stored in some memory element, which in practice

may be a set of register cells or a RAM macro-cell.
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Figure 4.2: General finite-state machine (a), digital operation T modeled

as FSM (b), and memoryless mapping (c).

Let operation T in (4.5) be associated with the general FSM rep¬

resentation as shown in figure 4.2(b). Then, the mathematical speci¬

fication of T involves:

1. a special element s(0) S, referred to as initial state,

2. a next-state function f : I x S —> S, and

3. an output function g : I x S —>• O.

There are two serious difficulties with this representation of T that

point to the problem of finding an appropriate generic description for

a general digital operation:

• The specification of T involves the initial state s(0) of the system.

This is highly undesirable, since it implies that two otherwise

identical processing tasks will correspond to different instances

of LBP and in general will have different lower bounds due to

deviating initial states. To avoid this peculiarity, s(0) would

need to be appended to the list of optimization variables, which

complicates the power dissipation function P, and thus the op¬

timization problem (4.4) even further.

• Even for a given initial state s(0), (/, g) defines no canonic rep¬

resentation of T because different pairs of next-state and output

function can yield the same 7/O-behavior. Every pair (/, g) de¬

scribing the same operation T will represent different instances
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of LBP. This is because / and g imply a certain state encod¬

ing, and vice versa. In other words, specifying next-state and

output function constrains the optimization variable RT-level

architecture A|®|.

Consequently, a generic model for T needs to detach from FSM related

concepts. This suggests to separate the memoryless mapping from the

memory.

Memoryless mapping

Let the RT-level architecture A^ for the implementation of T be

defined. By discarding the feedback of information as shown in fig¬

ure 4.2(c), T can then be modeled as memoryless mapping

r : X - Y (4.6)

where X = IxS,Y = OxS. This implies that the input (output)
of the data memory is considered part of the output (input) of T.

Hence, (4.6) is a generic model for any digital operation T excluding

all sequential actions involved. Utilizing (4.6) for the solution of LBP,

the lower bound on power dissipation will refer to a particular RT-

level architecture rather than to the operation itself. In other words,

describing V as memoryless mapping moves A^ from the list of op¬

timization variables to the list of input parameters. Obviously, this

also circumvents the problem of initial state as described above.

T in figure 4.2(c) comprises two memoryless mappings g and /,

that share the same domain I x S but differ in their ranges. The

lower bounds of g and / are independent only, if the two functions

are to be implemented separately. In this case, the lower bound for

T can be obtained from a summation over the lower bounds for g

and /. Information regarding the statistical properties of the input

data, i.e. Pr{I x S}, may be obtained from simulating a RT-level

description of T or from theoretical analysis of the associated FSM

representation, see section 3.5.

Example:
Assume the operation V to be the linear time-invariant difference equa¬

tion

o(k) = c0 • i(k) + d • i(k - 1) + c2 • i(k - 2) (4.7)
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with integer operands. In order to arrive at a memoryless mapping

as in (4.6), the RT-level architecture A^ needs to be defined. Fig¬

ure 4.3(a) and (b) show two alternative architectures that implement

(4.7). The two architectures can be translated to their corresponding

FSM representation, see figure 4.3(c) and (d). The resulting sets of

state symbols Si and 52, and thus the memoryless mappings Ti and

T2, are quite different. This in turn will yield different lower bounds

for the two architectures. D

(a) (b)
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t
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(c) (d)

Figure 4.3: Two different RTL architectures implementing the same DSP

operation (a,b) and the corresponding FSM representations (c,d).
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4.3.3 Representation of Data Statistics

Next to operation V, data statistics Pr{.} is the other important input

parameter to LBP. Data statistics may be given at two different levels

of abstraction. Each of these levels implies a specific interpretation of

the memoryless mapping (4.6), thus giving rise to further classification

of the lower bound problem.

Word-level data statistics

One way to specify the statistical properties of the application data

is at the word level. In this case, X and Y in T : X —> Y must

be seen as abstract sets of words, or symbols. Without loss of gen¬

erality it can be assumed that the symbols are integer numbers, i.e.

X, Y Ç: 1a. However, nothing is said about the binary representation

of those symbols. Hence, binary representation B{X} remains an op¬

timization variable. The basic question then is, up to which extent

can the statistical properties of the application data Pr{X} be taken

advantage of by means of appropriate coding.
A particularly compact representation of the statistical properties

of the input data is enabled via the information-theoretic notion of

entropy, see appendix B. In section 4.5 this will be elaborated further.

Bit-level data statistics

The alternative way to specify data statistics is at the bit level by

means of probability measures as introduced in section 3.3. This im¬

plies, that the binary representation for each input symbol is known.

In this case, B{X} is an input parameter rather than an optimization

variable.

Assuming that the binary representation of input symbols implies

the binary representation of output symbols, and that input and out¬

put symbols are represented with a fixed number of L and M bits,

the memoryless mapping (4.6) becomes

T : BL -> BM . (4.8)

The lower bound problem then is equivalent to finding the mini¬

mum power dissipation of any combinational circuit implementing the
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Boolean function (4.8). At this point, two optimization variables re¬

main, namely gate-level architecture Ar» and supply voltage Vdd. If

either of these is defined as well, the respective other variable is the

only degree of freedom left for minimizing power consumption and is

constraint by processing time Tp.

4.3.4 Problem Hierarchy

Based on the discussion above a categorization of LBP into four main

problem classes is suggested. Each of these problem classes is associ¬

ated with a special optimization problem as in (4.4). Figure 4.4 shows

this classification of the lower bound problem. The four subproblems

are denoted according to the number of variables in the optimization

problem associated:

LBP-4: This is the most general form of the lower bound problem,

where all four optimization variables are available for minimizing

power dissipation. No answer to this problem is known. Sec¬

tion 4.4 discusses the requirements a potential solution should

comply with.

LBP-3: Here, T is given as a memoryless mapping, which defines the

RT-level architecture. Since data statistics is specified at the

word-level, binary representation of data B{.} remains subject

to optimization. LBP-3 corresponds to the problem of minimum

power dissipation for data transmission, which can be solved by

an information-theoretic approach, see section 4.5.

LBP-2: In this case, the binary data representation B{-} is defined,

and the lower bound is subject to gate-level architecture Ar»

and supply voltage Vdd. No solution to LBP-2 is known. Sec¬

tion 4.6 reviews related results and discusses their qualification

for LBP-2.

LBP-1: This is the most basic version of the lower bound problem,

where power dissipation is to be minimized solely due to the

supply voltage level. As shown in figure 4.4 there are two paths

to LBP-1:



L
B
P

s
e
q
u
e
n
t
i
a
l
o
r

m
e
m
o
r
y
l
e
s
s

n
a
t
u
r
e
o
f

op
er

at
io

n
T

m
e
m
o
r
y
l
e
s
s

(w
or

d-
le

ve
l)

«-
-
f
^
L
-
M
b
i
t
-
l
e
v
e
l

)
g
i
v
e
n
a
t

(
f
r
e
e

}#
--
A
^

-
-
(

gi
ve

n"
^-

-
A
^

--
(

f
r
e
e

J

L
B
P
-
4

L
B
P
-
3

P
(
B
{
.
}
,
A
^
,
V
^
)

L
B
P
-
2

o b o I o t t
o
o c Ö O O
-

i
—
i

3

F
i
g
u
r
e

4
.
4
:

C
l
a
s
s
i
f
i
c
a
t
i
o
n
o
f
t
h
e
l
o
w
e
r
b
o
u
n
d
p
r
o
b
l
e
m
L
B
P

(i
np
ut

d
a
t
a

s
t
a
t
i
s
t
i
c
s
Pr

{.
},

R
T
-
l
e
v
e
l

a
r
c
h
i
t
e
c
t
u
r
e

A
®
i
,
b
i
n
a
r
y
d
a
t
a
r
e
p
r
e
s
e
n
t
a
t
i
o
n

B{
.}

,
ga
te
-l
ev
el

a
r
c
h
i
t
e
c
t
u
r
e
A
»
,

s
u
p
p
l
y
v
o
l
t
a
g
e

Vd
d'

,
s
e
e
p
p
.

68
).



76 Minimum Power Consumption

1. The path via bit-level statistics can be thought of as the

traditional voltage-scaling problem with given RT- and

gate-level architecture. If the delay of the critical path

in the system is known for some nominal supply voltage,

then the minimum Vdd can be calculated such as to meet

the processing time requirement [CB95].

2. The path via word-level statistics is mostly of academic

interest, since for given binary representation B{.} and

gate-level architecture Ar» the minimum supply voltage

does not depend on data statistics and can be calculated as

above. However, an information-theoretic approach which

applies to LBP-1 has been suggested in [Sha97], and will

be discussed in section 4.7.

Two general remarks regarding the proposed classification of LBP are

due:

• The four optimization variables A^, B{.}, Aj», Vdd, in that

order, correspond to decisions at different stages in the design

flow. Violating this order when determining these variables is

expected to overly limit the design space, and often is even im¬

practical. For instance, fixing the gate-level architecture Ar»

first, and then optimizing with respect to binary data represen¬

tation B{.}, makes no sense. Therefore, not every combination

of optimization variables corresponds to a useful subproblem of

LBP. The four subproblems LBP-1, ...,
LBP-4 are regarded as

the essential ones. In particular, further subclassification within

LBP-4 seems not fruitful because the RT-level architecture A^
is not defined.

• The hardness of the lower bound problem does not vary mono-

tonically with the number of optimization variables. The reason

is that the four optimization variables are related in an intricate

fashion. For instance, LBP-3 is "easier" to solve than LBP-2.

The additional optimization variable B{.} in this case simpli¬

fies the problem, see section 4.5. On the other hand, LBP-2 is

harder than LBP-1, obviously. In this case the additional de¬

gree of freedom provided by Ar» can only be employed in a
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subspace of the LBP-3 solution space, and the minimum of the

power dissipation function P may in general be more difficult to

find in this subspace.

4.4 The General Lower Bound Problem

As pointed out above, LBP-4 is the most general and, presumably,
most difficult lower bound problem, with all four optimization vari¬

ables being subject to variation. The difficulty consists in finding an

appropriate power dissipation function that comprises all optimization
variables and input parameters, see (4.3). No such power function is

currently known. This section provides general guidelines which may

be helpful for directing future attempts to tackle the problem.

4.4.1 Tightness of the Lower Bound

Let the processing task be written as vector of input parameters

t=(T,Pr{.},TP),

and the optimization variables be denoted

z = (Am,B{.},A^,Vdd) .

Knowing the analytical expression for the power dissipation function

P(t,z), the optimization problem (4.4) can be solved. This not only
provides the lower bound on power dissipation for a specific process¬

ing task t, but also yields the optimum z, denoted as z*. With this

information, the most energy-efficient implementation of t can be de¬

signed.

Forgoing the information on optimum values, a different approach
to LBP may be taken. In this case it suffices to find some power

dissipation function P = P(t) that only depends on the three input
parameters. Since P shall provide a lower bound, there must hold

P(t) < P(t,z) , \/t,z . (4.9)

Intuitively, it seems less difficult to construct P than P. However,
in order to be a practical lower bound, there are certain requirements
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that P has to meet. For instance, the naive lower bound P = 0

complies with (4.9) but is useless because it is not tight for most

combinations of input parameters, i.e. not close to the true lower

bound provided by minimizing P. In general, a lower bound on power

dissipation for some processing task t is of limited practical use, if

nothing is known about its quality, i.e. its tightness.
The requirement of tightness can be made more specific in the

context of energy efficiency, as discussed next.

4.4.2 Energy Efficiency Rating

Let the power dissipation of some implementation of processing task

t be PimPi(t). Then, a natural definition for the energy efficiency of

this implementation of t is

Limpl \J')

7/ < 1 with equality only if the implementation at hand is optimum.
In order to rate the energy efficiency according to (4.10) the opti¬

mum AL., B{.}*, A^., and V^d must be known. This can be circum¬

vented by employing the lower bound P(t) instead of the true power

dissipation function P(z, t), in order to obtain an estimated efficiency:

*impl \t)

As pointed out above, the usefulness of the efficiency estimated in this

way hinges on the quality of the lower bound P(t). In particular, the

call for reliable comparison of efficiency between two implementations
of different processing tasks t\ and t^, poses the following require¬
ment7:

ri(h) - V(t2) = f,(h) - f,(t2) . (4.12)

7Requirement (4.12) results from the question: How much closer does Pimpi (<i)
come to its lower bound than -Pimpi(*2)? A relaxed requirement would be:

V(ti) > v(t2) if ri(ti) > r)(t2), and rç(*i) < »Kfc) if »?(*i) < ^(«2).
This can be satisfied by P(t) = a P(t,z*) with a < 1. In fact, however, this is

not easier to ensure than (4.14), since it shall hold true for any processing task t.
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Substitution of (4.10) and (4.11) yields

Pimpl(t2)[P(tl,Z*) - P^)] = Pimpl(tl)[P(t2,Z*)-P(t2)] . (4.13)

For arbitrary Pimpi(ti) and Pimple) this can only be satisfied if

P(t) = P(t,z*), \/t. (4.14)

Hence, for a lower bound function P(t) to be beneficial for general

rating of energy efficiency, it must evaluate to the true minimum

power dissipation, i.e. it has to be tight for any processing task t.

In this light it is questionable whether a lower bound P(t) that sat¬

isfies (4.14) is easier to find than the true power dissipation function

P(t,z). Since P(t) evaluates to the true minimum power, it is ex¬

pected that knowing such a lower bound also hints at how to design
the most energy-efficient implementation of t, even though there is

no explicit dependence on the optimization variables A^, B{.}, Af»,
and Vdd.

4.4.3 Axiomatic Requirements

Besides the tightness demand discussed above, there are other,
common-sense requirements a model P(t) for minimum power dis¬

sipation shall comply with. Following, some of these axiomatic re¬

quirements are stated without claim for completeness. Each of these

postulates refers to one of the three input parameters V, Pr{.}, or Tp.
For the sake of clarity, only the relevant input parameter is included

in the mathematical formulation of the axioms.

A-l If the operation to be performed is the constant function, the

minimum power dissipation is zero:

P(T(x) = c) = 0
. (4.15)

This postulate is in contradiction with the thermodynamic
standpoint of Landauer's principle, see section 4.2.3, because

an operation T(x) = c discards information and should there¬

fore be dissipative. However, from a CMOS implementation

point of view, the realization of a known constant value implies
no switching activity. This, by virtue of (2.2), suggests zero
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power consumption. The discrepancy between the two view¬

points stems from the fact, that for a practical realization of

T(x) = c the circumstances of generating the input are disre¬

garded, while in thermodynamics they are part of the system
under consideration.

A-2 The minimum power dissipation for the identity mapping is

smaller than for any other operation on the same input:

P(T(x) = x) < P(T) . (4.16)

This is because implementing the identity mapping requires only
wires for the transmission of data, see section 4.5. Any other

operation will need these wires plus appropriate logic to discern

between different input symbols.

A-3 The minimum power dissipation for some processing task is not

larger than that of its sequential decomposition (chain rule) :

P(T) < P(ri) + P(r2) if r(x) = r2(ri(x)) . (4.17)

If the most energy-efficient way to perform operation T is by
means of two sequential operations, then equality will hold in

(4.17). Otherwise, P(T) must be smaller than the sum, be¬

cause it shall provide a lower bound. Stated differently, the

lower bound model should account for sequential decomposi¬
tion. Similarly, the lower bound model must be conscious of

any other architectural transformation that could be employed
for power reduction.

A-4 Uncorrelated input symbols with uniform distribution li imply
the largest minimum power consumption for any data statistic:

P(Pr{.}) < P(U) . (4.18)

This intuitively follows from the fact, that random data feature

no redundancy that could be employed by clever encoding, i.e.

optimization of B{.}, to reduce switching activity or to simplify
circuitry, see section 4.5.
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A-5 Increasing the time allowed to process a certain number of input

symbols decreases minimum power dissipation:

P(TPl) < P(Tp2) if TPl > Tp2 . (4.19)

This is justified by the basic relation for energy dissipation E =

CLVdd/2, because the relaxed processing speed can be utilized

to reduce the supply voltage Vdd or to design slower circuits with

smaller capacitive load Cl-

The above axioms shall hold true for the general lower bound problem
LBP-4. For the most part, they also apply to the other subproblems,
with the exception of A-4. This axiom does not apply if the binary
data encoding is fixed, as in LBP-2 and LBP-1, because then redun¬

dancy can not be utilized for power reduction. In this case, unfavor¬

able bit-level correlation can imply higher switching activity than a

random bit stream, see figure 3.4.

4.4.4 Implications

At this point the following can be concluded:

• For the reliable rating of energy efficiency of known implemen¬

tations, an estimated lower bound must be identical to the true

lower bound on power dissipation, see (4.14). This requirement
is valid for the most general lower bound problem LBP-4 and

for any of the other subproblems alike.

• It is unclear how requirement (4.14) can be satisfied without

knowledge of the optimum implementation. Hence, we conjec¬
ture that there is no implementation-independent lower bound

on power dissipation.

• Since no explicit power dissipation function is known, the solu¬

tion of the general lower bound problem LBP-4 is unknown.

4.5 Lower Bound for Data Transmission

This section investigates the lower bound problem LBP-3, where min¬

imum power dissipation is subject to optimization of binary data rep¬

resentation B{.}, gate-level architecture Ar», and supply voltage Vdd,
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see section 4.3.4. Because data statistics Pr{.} are specified at the

word-level and binary data representation B{.} can be chosen arbi¬

trarily, LBP-3 may be viewed as the problem of finding the minimum

power dissipation for transmitting data over an information channel.

This will be elucidated in section 4.5.1. Subsequent sections then will

deal with minimum switching activity in the context of data trans¬

mission.

4.5.1 Power Dissipation Bound

Deterministic information channel

As mentioned in section 4.3.3, X and Y in T : X —> Y are interpreted
as abstract sets of symbols, because data statistics Pr{.} are specified
at the word-level. This suggests an information-theoretic model for

LBP-3 as indicated in figure 4.5(a).
An information source sends out symbols at a rate equal to the

inverse of the processing time Tp. The sequence of symbols {Xi} has

a certain information content, which is specified as entropy H(X), see

appendix B. Since V is ultimately to be implemented with a two-

level sensing technology, the abstract input symbols have to be given
a binary representation B{X} by means of encoding. The memory¬

less mapping T partitions the domain of input symbols in M disjoint
subsets, where M is the number of possible output symbols, see fig¬
ure 4.5(b). T may therefore be seen as memoryless information chan¬

nel, because every input symbol is mapped to a specific output symbol
with probability one [Abr63].

Intuitively, for a given number of input symbols, the implementa¬
tion of T seems more costly the more domains M must be discerned.

For instance, if M = 1 the output is constant, and according to axiom

(4.15) no power needs to be dissipated. However, if M > 1, the output

diversity will also depend on the probability of input symbols. Obvi¬

ously, the problem is to find an analytical measure that describes the

complexity of T subject to input and output statistics. On one hand,
this measure shall relate the three input parameters V, Pr{.}, and Tp
to the lower bound on power dissipation P. On the other hand, this

measure must be implementation independent, because B{.}, Ar»,
and Vdd are subject to optimization.
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Figure 4.5: Operation Y as deterministic communication channel: (a)
block diagram, (b) partition of input domain by memoryless mapping.

Specification of processing task

One such measure that incorporates the statistics of two sequences is

the mutual information I(X; Y), see appendix B. Mutual information

I(X; Y) can be viewed as the reduction in uncertainty in X due to

the knowledge of Y. In the context of operation T, this reduction in

uncertainty is due to the information transfered from the input X to

the output Y. The information transfer rate R associated with V may

therefore be defined as in [Sha97]:

R =

I{X;Y)

Tp
(4.20)

Since T is a memoryless mapping, it follows that the conditional en¬

tropy H(Y\X) = 0 and subsequently I(X;Y) = H(Y), see (B.8).
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Hence, any transformation V requires an information transfer rate of

R=ZSß
(4.21)

TP
K J

bits per second [bps]. Since H(Y) depends on the input data statistics

and on the operation T, information transfer rate R is a function of

all three input parameters and thus specifies a processing task t =

(r,Pr{.},Tp). However, R is independent of the implementation of

the processing task.

Lower bound function P

Next, in order to be useful for LBP-3, information transfer rate R

has to be associated with power dissipation. One way to do so is to

specify the lower bound function P(t) depending on R. Intuitively,

P(t) oc R = ^p . (4.22)

For a specific problem instance, P(t) shall be smaller than, or ideally

equal to the minimum power dissipation achievable with optimum

B{.}*, A^, and Vdd. However, the problem is how to justify this

condition without knowledge of the optimum implementation and the

corresponding minimum power consumption. In case of LBP-3 this

perplexity may be resolved, because data statistics is specified at the

word-level, and the binary data representation B{.} can be chosen

arbitrarily for any processing task t.

Optimal encoding

By virtue of (4.21), optimal binary encoding B{.}* of input symbols X
shall imply the lowest information transfer rate R such that the out¬

put symbols Y can be uniquely identified by the decoder (not shown

in figure 4.5(a)). Therefore, B{.}* should assign equal codewords to

input symbols within the same partition of the input domain, see fig¬
ure 4.5(b). In this case, no logic to assign appropriate output symbols
to different input symbols is required, and the gate-level architecture

will be least dissipative. Thus, AJ» is a set of wires, used to transmit
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the required R bps. The optimum supply voltage Vdd in this case

depends on the transmission scheme employed.
From these manifestations of the optimal implementation of pro¬

cessing task t, the true minimum power dissipation can be deduced.

Minimum power dissipation

Assume that every input domain is encoded with a fixed number of

r > H(Y) bits. This limit on the number of bits is imposed by
Shannon's first theorem, i.e. the source coding theorem [Abr63]. Then,
the minimum power dissipation of a processing task t follows from

(2.2) as:

P(t,z*) = \cL^(Vd*d)2. (4.23)

Cl denotes the load capacitance of a transmission wire, and is as¬

sumed to be determined by the CMOS technology. a*s is the minimum

number of signal transitions per symbol transmitted. The following
sections will explore a*s as function of the entropy of the sequence of

symbols and the number of bits per symbol r. In general, the num¬

ber of transitions per symbol is related to the switching activity of a

binary signal ax as defined in (3.8) by means of

ax = ^ . (4.24)

If more than one signal (wire) is used for transmission, (4.24) gives
the average switching activity for these signals.

The optimum supply voltage Vdd in (4.23) depends on the time

schedule used for the transmission of the r bits. For serial transmission

by means of a single binary signal (wire), the optimum operating volt¬

age Vdd corresponds to a propagation delay of the transmission wire of

Tp/r seconds. For parallel transmission over r wires, Vdd corresponds
to a propagation delay of Tp seconds. Assuming that minimum ad¬

missible supply voltage varies proportionally with the inverse of the

propagation delay, parallel transmission ideally permits a diminution

of minimum power consumption by a factor of 1/r2 compared to se¬

rial transmission, simply because power varies quadratically with Vdd.

This, however, is only true within certain limits, because the propaga¬

tion delay of a transmission line drastically increases as Vdd approaches
the threshold voltage of the MOS devices involved [CB95].
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Practical applicability

Minimum power dissipation P(t, z*) as given in (4.23) may be seen

as the general solution for LBP-3. However, this solution is mainly
of academic interest. Its practical implications are limited, because

the power consumption inferred does not include the cost of binary

encoding. This is due to the abstract specification of the operation

T, which, together with word-level data statistics, give rise to the

information-theoretic model (4.21) for the processing task. Such a

model in turn permits to move the burden of computation from the

processing unit under consideration to the preceding unit. In order

to pinpoint the computational burden, means must be provided to

bridge the information-theoretic viewpoint and the implementation
that ultimately must use two-level sensing. Abstract specification of

data statistics at the word-level, without any relation to the binary
implementation, is inappropriate for this matter.

Basically there are two ways to go round the problem above: One

is to specify data statistics at the bit-level as in LBP-2, see section 4.6.

The other way is to abide word-level data statistics and close the gap

to binary implementation by assuming a given gate-level architecture.

This is the basic concept of the information-theoretic approach to

LBP-1, see section 4.7.

4.5.2 Switching Activity Bounds

This section provides a general result for the minimum number of

transitions per symbol ot*s as it appears in the minimum power dissi¬

pation function (4.23). Subsequent sections then will deal with two

special encoding schemes.

A general encoding scheme not only will consider symbol proba¬

bilities, but may also employ temporal correlation between symbols.
Therefore, the information content of some sequence {Xi} to be coded

must be given as entropy rate % ({Xi}), rather than as entropy H(X),
see (B.9). Given the entropy rate, there exist an upper and lower

bound on the switching activity of the binary signal that represents
the encoded symbols, see theorem 4.1. For brevity, 7i ({Xi}) will be

written as %. If {Xi} is an i.i.d. process, entropy rate % is equal to

the entropy H(X), see (B.10).
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Theorem 4.1 ([RSH99bJ)
If a discrete random process of entropy rate % is encoded with r > %

bits per symbol on average, the expected number of signal transitions

per symbol as is bounded by

1-h- (4.25)

wiiere h 1(-) G [0,1] is the inverse of the binary entropy function

deßned in (B.4) with h~x(y) = x and x G [0,0.5].

The above result is universal in a sense that it applies to any

encoding scheme, parallel and serial transmission of bits, and to any

stationary signal source with arbitrary statistics. Figure 4.6 elucidates

(4.25) by showing the lower and upper bound on as for different values

of r. Both as and r are depicted in units of 7i. If the source is coded

with r = % bits, which corresponds to optimal entropy coding, the

binary signal representing the codeword will be completely random

and uncorrelated, i.e. ax = as/r — as/H = 0.5. By increasing r

one obtains more freedom to choose the code, which can be employed
to code the source using fewer and fewer, or, if desired, using more

and more signal transitions. However, any valid coding scheme must

reside within the unshaded region in figure 4.6.

bits per symbol (r/9ï)

Figure 4.6: Lower and upper bound on the number of transitions per

symbol as (adapted from [RSH99b]).
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Transition signaling

The proof of theorem 4.1 is given in [RSH99b] and runs along
the following line: Given the entropy rate of a binary sequence,

the number of 'l's in this sequence is bounded by means of the

binary entropy function (B.4). Then, interpreting logic '1' as binary
transition and logic '0' as no transition, the number of transitions

is bounded. Such an interpretation is justified because entropy only

depends on the probability distribution, but is independent of the

actual symbol value.

The explanation of logic values '1' and '0' in the codeword as 'transi¬

tion' and 'no transition' on the corresponding data bus line is called

transition signaling. It is a convenient approach to the problem of

minimizing the number of transitions in a binary sequence, which

then is identical to minimizing the number of 'l's in that sequence.

In case of transition signaling, the encoder must generate code¬

words that indicate a transition by logic '1', and no transition by

logic '0'. This requires extra circuitry at the encoder and decoder

side in order to convert transition domain codewords to the level do¬

main of the physical data bus, and vice versa. Figure 4.7 compares

the principle of ordinary transmission (level signaling) with transition

signaling. In both cases, the physical data lines are identical.

ay
level

domain

encoder

0*
transition

domain

encoder

level domain

data bus

level

domain

decoder

transition

domain

decoder

-®

-©

Figure 4.7: Principle of ordinary level signaling (top) and transition

signaling (bottom).
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4.5.3 Variable-Length Coding

One way to approach the bounds in (4.25) is to use variable-length
codes by assigning shorter codewords to more probable symbols and

using longer ones for less frequent symbols. An example of such a

coding approach is the well-known Huffman code [CT91].

Example:
Assume an i.i.d. process X with five symbols and probability distribu¬

tion as shown in table 4.2. The entropy of the source is computed as

H(X) = 2.122 bits. When coding the five symbols with the conven¬

tional binary code, the number of transitions per symbol follows from

(3.10) for uncorrelated signals as as(bin) = Y2i=o^f1Xi(^- ~ VxJ =

0.48 + 0.48 + 0.18 = 1.14. This is within the theoretical bounds of

0.578 < as < 2.422 computed from (4.25).
Using transition signaling with r = 3 bits per symbol reduces the

activity to as (trans) = 0.7. This is within 18% of the theoretical

lower bound. The corresponding code is shown in table 4.2 (column
four), where '|' stands for 'transition' and '—' for 'no transition'.

Constructing a variable length code and using transition signaling
as shown in column five (vie), yields as (vie) — 0.9 > as (trans).
However, since the variable length code on average only uses

r = 2.2 < 3 bits per symbol, it only misses the theoretical lower

bound by 5%, and hence must be considered more efficient. D

X Px binary trans. vie

0 1/10 000 II- — 1-
1 2/10 001 — I -1
2 4/10 010 1
3 2/10 011 - | -

4 1/10 100 1 — — I I

Table 4.2: Probability distribution, conventional binary code, optimal

(K = 1) transition domain code, and variable-length code for example i.i.d.

source with 5 symbols.
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Variable codeword lengths as used in the preceding example are

opposed to today's predominant synchronous, word-parallel design
style. It is always possible to convert a variable-length code to a fixed-

length code without increasing switching activity by padding with '—'

(no transition). The codewords can then be transmitted over a parallel
data bus that has as many wires as the longest codeword requires.

However, the effectiveness of this new code in terms of reaching the

lower activity bound is much worse, since the many redundant bits

are not used efficiently. Therefore, it is of interest to investigate the

theoretical bounds on switching activity when fixed-length codes are

to be used exclusively.

4.5.4 Fixed-Length Coding

In a fixed-length code every codeword consists of r bits when cod¬

ing each symbol individually. Grouping K symbols into one block

and then coding these blocks instead of individual symbols, yields a

codeword length of rK bits. As K increases, the bounds in (4.25)
may be asymptotically achieved. However, the number of codewords

to be stored in the codebook is |X|X. Therefore, the required cod¬

ing hardware grows exponentially with block length K. Furthermore,
real-time encoding requires extra storage capacity for joint evaluation

of K symbols.

For fixed-length coding the activity bounds in (4.25) are related

to three parameters: the entropy rate "H of the symbol source, the

number of bits per symbol r, equivalently to the data bus width, and

the coding block length K. These relations are discussed next.

Activity bounds depending on entropy rate

Assume a fixed-length code of r bits to be transmitted over a given
physical data link, e.g. an 8-bit bus. Also, let the block length be

fixed, e.g. K = 1. Then, as % increases, the difference between lower

and upper bound decreases. If % = r, then as = r/2, and from (4.24)
follows the switching activity for each line of the data bus as aXi —

1/2 (i = 1,..., r). Conversely, as % decreases, the gap between lower

and upper bound in (4.25) grows, meaning that there exist binary
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representations that are highly inefficient from a power consumption

point of view.

Consequently, for sources with high redundancy, i.e. highly un¬

equal symbol probabilities and/or memory over many time steps,

appropriate encoding promises larger power savings than for low-

redundancy sources. This is in accordance with the results of chap¬
ter 5, where the standard 2's-complement encoding is shown to waste

power in case of speech data, which indeed features a high degree of

redundancy.

Activity bounds depending on the number of bits

In practice, the coding block length K will be limited due to system-
level constraints such as area or power consumption. Since the coding
hardware grows exponentially with block length, K in general must

be rather small. In fact, for most practical systems only K < 2 is

feasible.

It is possible to compute the number of bits per symbol neces¬

sary to minimize as for a given block length. However, for arbitrary
sources and distributions the notation for explicit expressions on this

number becomes very cumbersome. The following result for uniformly
distributed symbols demonstrates the general reasoning.

Corollary 4.1

Let X be an i.i.d. source with uniform distribution. The minimum

number of bits per symbol r* that minimizes the switching activity
for block length K is given by

r'(K)
XlK ~ X'

(4.26)
K

Coding with r > r* bits per symbol can not further reduce as -

Proof: The minimum number of transitions for fixed-length cod¬

ing is achieved if there is exactly one codeword with zero transition,
and all other codewords have one transition. If the codewords are n

bits long, there are at most n codewords with one transition. Hence,
at most n + 1 symbols can be coded with the minimum number of

transitions.
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On the other hand, for block length K, there are \X\K symbols
to be coded with n = rK bits. Since each of the corresponding l-X"^
codewords shall cause at most one transition, we have

\X\K < n+l = rK + 1
.

Since for fixed-length encoding r must be an integer number, (4.26)
follows. Employing r > r* bits does not reduce as because the

codewords must differ in at least one bit position.

Example:
Assume an i.i.d. source X with five symbols, all being equally likely.
From (4.26) one has r*(K = 1) = 4, r*(K = 2) = 12, and r*(K =

3) =42. Figure 4.8 shows the minimum switching activity as function

of r for block lengths K = 1,2,3, together with the absolute lower

bound any coding scheme could achieve. As can be seen, for a given
K it makes no sense to increase r beyond r*, since the number of

transitions per symbol does not further decrease. For r = r*, the

deviation from the absolute lower bound is minimum, indicating that

for a given block length K coding with r* (K) bits per symbol is most

efficient in terms of switching activity. D

Activity bounds depending on block length

In figure 4.8 it can be seen that for a given number r of bits the

switching activity as does not monotonically decrease with increasing
block length K. However, for K -> oo the absolute lower bound is

approached. Therefore, the following question is naturally to ask: For

some given r and K, what is the optimal block length K* such that

K* < K and as is minimum.

The derivation of a general explicit expression for K* is imprac¬
ticable. However, determination of K* via a computer program is

rather straightforward. Such a program, that calculates the mini¬

mum switching activity achievable for an i.i.d. source with arbitrary
statistics for some given r and K, has been implemented. The fol¬

lowing result provides the general reasoning on which this program is

based.



Lower Bound for Data Transmission LBP-3 93
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Figure 4.8: Minimum number of transitions per symbol vs. number of

bits per symbol for different block length K (\X\ = 5, uniform distribution).

Corollary 4.2

Let X be an i.i.d. source with uniform distribution. For a given num¬

ber of r bits per symbol, the minimum number of transitions per

symbol ag as function of block length K satisfies

K-\X\K K.\xy
(4.27)

t*K is the maximum number of transitions that must be used to code

any block ofK symbols, and is uniquely given by

s er) < w* <- ±n
t=0 x y t-0 x 7

(4.28)

Proof: For an n-bit fixed-length code there are exactly ()
codewords with t 'l's (t — \,...,n), corresponding to t transitions

when using transition signaling. For block length K the codewords
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associated to blocks of symbols are n = rK bits long. For minimum

switching activity codewords are assigned in increasing order with

respect to the number of transitions t. Since \X\K codewords are

required, (4.28) follows. Furthermore, the (") codewords with t

transitions each, cause together t() transitions. Since all codewords

are equally likely by proposition, and a^ is the number of transitions

per individual symbol, (4.27) follows.

The bounds provided in (4.27) are rather loose. However, the

expression for tighter bounds, and the relation of minimum switching

activity to block length K for sources with arbitrary statistics become

even more entangled. The legal ranges of a*s(K) and a*s(K + 1) im¬

posed by (4.27) in general overlap significantly. If a*s(K) comes very

close to its lower bound and a*s(K + 1) does not, then non-monotonic

behavior of minimum switching activity with respect to block length
K is observed.

Example:
Assume again an i.i.d. source X with five symbols, all being equally

likely. For this source, figure 4.9 shows the minimum switching activ¬

ity as function of block length K for r = 3,..., 7 bits per symbol. As

can be seen, for a given r the minimum activity achievable does not

always decrease with increasing block length K. For instance, let the

data bus width be restricted to r = 5 bits (two redundant bit lines are

used). If the current optimal coding employs a block length of K = 3,
then it is useless to increase the block length by one only, since with

K = 4 switching activity can not be reduced further. D

4.5.5 Implications

As pointed out previously, the solution of LBP-3 provided in sec¬

tion 4.5.1 is of limited practical utility, because it applies to data

transmission only. Moreover, the cost of encoding, which is applied
in order to achieve minimum power consumption on the transmitting
wires, is not included in the analysis. The application of complex

coding schemes is therefore confined to high-capacitance data links,

e.g. off-chip buses or highly loaded memory interfaces. In this case

switching activity savings attained by appropriate encoding can
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3 4

block length (K)

Figure 4.9: Minimum number of transitions per symbol vs. block length
K for different number of bits per symbol r (\X\ — 5, uniform distribution).

justify the coding overhead [BMM+00].

From the examination of the theoretical activity bounds (4.25) the

following general conclusions regarding data encoding for low power

dissipation may be drawn:

• For sources with high redundancy, i.e. highly unequal symbol

probabilities and/or memory over many time steps, appropriate

encoding promises larger power savings than for low-redundancy
sources.

• For a fixed number of bits per symbol r, minimum switching

activity does not monotonically decrease with ascending block

length K.

• In practice, one will often be restricted to fixed-length codes and

a coding block length of K < 2. In this case there exists a limit

on the number of bits per symbol r, beyond which no activity
reduction can be achieved.
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4.6 Lower Bound in Boolean Optimiza¬
tion

4.6.1 Problem Description

According to figure 4.4, in LBP-2 gate-level architecture A^o. and sup¬

ply voltage Vdd are optimization variables, while RT-level architecture

^4j0j and bit-level data statistics B{.} are known input parameters. No

general solution for this problem is known. However, some comments

on the problem's disposition can be formulated.

Assuming fixed-length encoded inputs and outputs, LBP-2 cor¬

responds to finding the most efficient combinational circuit that im¬

plements a specific Boolean function V : BL -» BM. The condition

for maximum delay of the critical path in this circuit is given by the

processing time Tp. In this sense, LBP-2 is reminiscent of the ordi¬

nary synthesis problem, where a gate-level netlist is to be constructed

from an abstract functional description. The peculiarities of the lower

bound problem may be elucidated by opposing LBP-2 and the syn¬

thesis problem.

• In ordinary synthesis, the supply voltage Vdd is fixed and every

gate has a known delay according to this nominal voltage. For

LBP-2 Vdd is an optimization variable and can not be chosen in¬

dependently of the gate-level architecture A^o-, because the two

are linked by the delay of the critical path. However, even if Vdd
is treated as given input parameter, the lower bound problem
differs from the synthesis problem in the following points.

• Unconstrained synthesis may be performed in two consecutive

steps. First, the Boolean function is minimized with respect to

some generic representation. Subsequently, this representation
is mapped to a set of technology-dependent logic gates. Such

successive execution simplifies the synthesis problem, but is in¬

adequate for matters of optimum implementation. In LBP-2

Boolean minimization and technology mapping must be con¬

sidered jointly with respect to power dissipation, as is done in

timing-driven synthesis where power cost is replaced by the de¬

lay of the critical path. However, for LBP-2 there is an addi¬

tional parameter, namely data statistics.
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The problem may be simplified if mapping is confined to a small

subset of generic gates that form a complete basis for the real¬

ization of Boolean functions, e.g. inverter and two-input AND

and OR. Even so, LBP-2 differs from the synthesis problem in

the following respect.

• For synthesis, the gate-equivalent count typically is a fair mea¬

sure for circuit area. Minimizing this number in general is as¬

sumed to also reduce power consumption. For minimum power

dissipation in regard of data statistics this conclusion is not jus¬
tified. If very few input patterns have a very high probability
of occurrence, a larger circuit with a high degree of redundancy
could be more efficient by means of precomputation [AMD+94].
In this case the redundant logic is used to identify and evalu¬

ate the most frequent input patterns by a small, energy-efficient
subcircuit. The larger, more dissipative main circuit then would

only be enabled upon a miss of the subcircuit.

The lower bound problem LBP-2 becomes even more intricate if

variable-length codes are permitted for the binary representation B{.}.
Thus, a universal power dissipation model should include this poten¬
tial as well, even if it is rarely used in practice because it impedes syn¬

chronous word-parallel processing. From a theoretical point of view

such coding may indeed seem reasonable as it naturally commences

circuit activity only as needed. This has also been noted in [Ger96],
where a computational coding theory in generalization of Boolean

minimization algorithms was postulated.

4.6.2 Related Efforts

Although LBP-2 has, to all appearances, formally not been attacked

by the VLSI research community, there is previous work on RT-

level power estimation that relates to the lower bound problem.
Information-theoretic concepts have been employed for RT-level power

estimation in two ways.

Complexity analysis of Boolean functions. The entropy of the

output of some Boolean function, assuming that all input com¬

binations are equally likely, is considered a measure for the



98 Minimum Power Consumption

area-complexity of this function. Under this hypothesis an area

model which is exponential in the number of inputs was de¬

rived in [CA90]. For most practical circuits this model is not

very accurate and even for reasonable number of inputs dramat¬

ically overestimates the gate count. This model was improved
for single-output Boolean functions [NN96a] and multi-output
functions [NN99] based on the notion of cube complexity .

Estimation of switching activity. The other use of entropy for

power estimation is to predict the average switching activity
in a circuit that implements the Boolean function at hand. In

[MMP96, NN96b] formulas for the average entropy per net H as

a function of average input and output entropy were developed.
This requires simplifying assumptions on the logic structure of

the circuit, as well as on the correlation of signals. Average
switching activity in the circuit may then be approximated as

ax « H/2 . (4.29)

This assumes temporally uncorrelated signals, see figure B.l.

Combining the above results, relative power dissipation can be esti¬

mated as the product of circuit area and average switching activity.
Direct application of the above approach to LBP-2 is not possible

for two reasons. First, for both complexity analysis and activity esti¬

mation strong assumptions on input data statistics have to be made.

However, the specific input statistics Pr{.} are a crucial input pa¬

rameter, subject to which minimum dissipation should vary. Second,
isolated analysis of Boolean function complexity and switching activ¬

ity might be acceptable for relative power estimation, but it is not

when searching for the absolute lower limit of dissipation. In this case

the gate-level structure must account for the given signal statistics.

4.6.3 Implications

In the absence of an analytical power dissipation model

P(r, Pr{.},Tp,A^,B{.}, Aock, Vdd) it is not clear how to tackle

LBP-2 nor the simplified version with fixed Vdd- Furthermore, the

lower bound function P(T,Pr{.},Tp, A^,B{.}) again should obey
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the tightness requirement (4.14). It is not apparent how such P could

be formulated without reference to the optimal solution A^., Vdd.

4.7 Lower Bound on Supply Voltage

In section 4.5 operation T has been associated with a deterministic

information channel, such as to infer the minimum power dissipation
for data transmission. The actual cost of data processing was not

included, however. There has also been an attempt to associate oper¬

ation T with a noisy information channel [Sha97], in order to include

data processing power. The lower bound on dissipation so established

refers to one particular implementation of the processing task at hand.

That is, Aj0j, Aj»., and B{.} are given input parameters and Vdd re¬

mains the sole optimization variable, as in LBP-1.

This section first will present the information-theoretic approach
from [Sha97] to LBP-1, and then discuss its limitations.

4.7.1 Information-theoretic Results

Noisy communication channel

Let r : X —¥ Y denote a deterministic channel as in section 4.5.1, but

this time with noise N imposed on the channel output such that

Y' = Y + N = T(X) + N . (4.30)

In this case H(Y'\X) > 0 and is a function of the probability distribu¬

tions of X and N. The noise imposed on the channel manifests itself

in the fact, that for a specific channel input symbol different output

symbols can appear, each of which has its own probability.
The channel capacity C is defined as the maximum mutual infor¬

mation I(X;Y') or, equivalently, the minimum conditional entropy

H(Y'\Y) over all possible distributions of X [Abr63]. For a given
noise power spectrum, capacity C characterizes the channel's ability
of transferring information and is independent of the input statistics.

In [Sha48] it was shown that the capacity of a channel bandlimited to

frequency W is

C = / log[l + SNR(/)]4f (4.31)
Jo
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where C is in bps. SNR(/) denotes the signal-to-noise ratio which,
for flat signal and noise power spectra, is given by the ratio of signal
and noise variance:

2

SNR(/) = ^f- . (4.32)

Power dissipation bound

The joint source-channel coding theorem [Sha48] states, that an in¬

formation transfer rate R over a noisy channel is achievable, with the

probability of error approaching zero, as long as

R < C
. (4.33)

Substitution of (4.31) and (4.32) into (4.33) yields the following con¬

straint on signal power for reliable transmission:

ajc > (2R'W - 1)*2N . (4.34)

From (4.34) immediately follows a lower bound on the power dissipa¬
tion of the channel.

Theorem 4.2 ([Sha97])
For a channel bandlimited to W Hz, with üat signal and noise power

spectrum, and a desired information transfer rate ofR bps, the lower

bound on power dissipation is given by

Pmin > P {(2R/W - l)a%) (4.35)

where P(a\) is a linear monotonically increasing function relating the

signal power o\ to power dissipation, and o^ is the noise power.

At first, the lower bound (4.35) is independent of the implementa¬
tion technology and does not refer to the problem of minimum power

consumption for digital VLSI processing. In [Sha97] an attempt was

made to apply theorem 4.2 to CMOS VLSI by making a number of

simplifying assumptions, which will be discussed next.
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4.7.2 Application to VLSI Processing

Figure 4.10(a) shows the information-theoretic model of a processing
task realized in a noisy implementation medium. The architecture

implementing operation T is viewed as noisy bandlimited channel for

which theorem 4.2 must apply. By identifying all parameters in theo¬

rem 4.2 with characteristics from LBP, a relation between (4.35) and

minimum dissipation of some processing task can be established based

on the assumptions made in [Sha97].

Information transfer rate. Let R be defined as in section 4.5.1,
R = H(Y)/Tp. Since operation T, input data statistics Pr{.},
and processing time Tp determine R, the processing task un¬

der consideration is implicitly included in the power dissipation
bound (4.35).

Noise power. A specific implementation of T is associated with a

certain noise power a2^. It is assumed that a noise model is

known, from which a2^ can be deduced for a given gate-level
architecture A^o [Sha97]. This model shall lump all noise com¬

ponents of the circuit into a single noise source at its output,
see figure 4.10(a).

Bandwidth. According to the sampling theorem, a channel bandlim¬

ited to W Hz can be used a maximum of 2W times per second

without interference of the transmit pulses. In [Sha97] it was

shown, that this maximum possible transmission rate indeed

achieves the lowest power dissipation for a given information

transfer rate R. Thus, for the delay Td of the critical path of

the given implementation ^4-t» must hold

T* =

w (436)

This is reminiscent of a dual-edge-triggered clocking strategy for

the implementation with W = fcik = fd/Z, see section 2.1.

Power function. Let the transmit pulse have ideal square-wave

shape of amplitude equal to the supply voltage Vdd such that

A = Vd2dß • (4-37)
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Assuming that every channel use induces a signal transition, the

power dissipation function P(o~x) for CMOS follows from (2.2)
as

P(a2x) = 4CLWa2x . (4.38)

Here Cl denotes the average load capacitance associated with

the gate-level architecture Ai» at hand. (2.2) obeys the require¬
ment of linearity and monotony of P(o~x) posed in theorem 4.2.

Relation to LBP-1

The assumed knowledge of A|>o- for derivation of a2^ implies that

the binary encoding of input data B{.} is known. Furthermore, the

N

Source

A

X
B{-}

encoder

r

H(X)

Y

+>

H(Y) H(Y')

MTp

(a)

(b)

Figure 4.10: Processing task in a noisy implementation media: (a)
block diagram, (b) memoryless mapping T blurred by noise (adapted from

[Sha97]).
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RT-level architecture A^ is given, since T is a memoryless map¬

ping. Hence, the only optimization variable left for achieving min¬

imum power consumption is the supply voltage Vdd, which complies
with LBP-1. The lower bound function P(t), see section 4.4.1, follows

from application of (4.38) to theorem 4.2 as

P(t) > ±CLW(2R'W - l)a% (4.39)

with t = (V,Pr{.},Tp,Am,B{.},A^o.). The derivation of P(t) also

provides the true minimum power dissipation P(t,z*), because the

optimal supply voltage Vdd follows directly from substituting (4.37)
into (4.34). This fact reinforces the conjecture made in the context of

energy efficiency rating, that there is no implementation-independent
lower bound P(t) which is tight to the true lower bound P(t, z*).

Figure 4.11 summarizes the information-theoretic approach in the

context of LBP-1. In the theory by [Sha97], Vdd corresponds to the

minimum signal power that permits unique decoding of symbols from

the noisy output Y'. This is symbolized in figure 4.10(b), where the

dashed fields around the true output symbols may not overlap to allow

unambiguous decoding. Thus, operation with optimal Vdd changes the

channel characteristic to noiseless transmission.

4.7.3 Limitations

In order to arrive at the lower bound (4.39) a number of simplifi¬
cations were introduced by [Sha97]. Critical examination of these

simplifications yields the following limitations of the theory.

• The channel capacity C, associated with an implementation,

depends on the noise power cr2^. However, there exists no con¬

sistent approach to derive a2^ for a given gate-level netlist. Such

an approach would need to refer any noise to a single source at

the output of the circuit, see figure 4.10(a).

• In CMOS circuits, noise is mainly due to signal switching that

induces voltage fluctuations (ground and power bounce) by
means of series impedance in common power supply lines. Wave¬

form and amplitude of this noise voltage depend on the sup¬

ply voltage Vdd [KAK99]. One deficiency of the information-

theoretic approach is the assumed independence of noise power
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Ox and signal power ax, which is equivalent to Vdd. Further¬

more, switching noise is highly periodical, whereas a flat signal

power spectrum (white noise) was assumed.

Similarly, the theory neglects the dependence of bandwidth W

on supply voltage Vdd, which in practice are linked via the delay
of the critical path, see (4.36).

Taking the dependencies of cr2^ and W on Vdd together yields
an entangled relation between channel capacity C and supply

voltage Vdd. Thus, (4.34) is an implicit relation for signal power

orx and the inference of theorem 4.2 is not justified for CMOS

implementation.

• With the assumption that every channel use induces a signal

transition, i.e. a = 1, (4.38) actually sets an upper limit on

power dissipation as function of signal power, and thus, does

not qualify for the application to theorem 4.2. Since no useful

lower bound on the number of transitions per channel use ex¬

ists, average switching activity in the circuit under consideration

could act as a makeshift.

• Even if all of the above issues could be resolved, the information-

theoretic approach proposed has limited practical significance
because it predicts minimum power dissipation and supply volt¬

age for a given gate-level implementation of some processing
task. However, the same information can readily be obtained by
means of gate-level power estimation and an ordinary voltage-

scaling approach.

• The cost of coding is not included in the analysis. Therefore,

by means of optimal encoding as discussed in section 4.5.1, the

implementation architecture also could be a set of mere wires.

In this case LBP-1 is equivalent to LBP-3.

This rather long list of limitations indicates that the solution for

LBP-1 can not be derived from straightforward application of Shan¬

non's theory of information, as was attempted in [Sha97]. This fact

alone suggests that the general lower bound problem LBP-4 can not

be solved this way either. The following section provides a formal

reasoning for this conclusion.
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4.8 Information Theory vs. Low Power

VLSI

Similarly to [Sha97], also the work presented in this chapter initially
was inspired of an alleged analogy between the information-theoretic

transmission bound problem and LBP as formulated in section 4.3.1.

However, our point of view has changed in the course of the research

performed. This section provides the rationale behind this change in

our viewpoint.

4.8.1 Digest of Information-theoretic Results

Source coding

Let the information rate R of some code be defined as the number of

bits of information per code symbol, where n code symbols form one

codeword. Shannon's first theorem, i.e. the source coding theorem

states that a source emitting H bits of information per source symbol
can be represented by a code of information rate R> H.

Channel coding

Shannon's second theorem, i.e. the channel coding theorem states that

reliable transmission over a channel with capacity C is possible, as

long as the information rate R of the code is below the channel ca¬

pacity: R < C. Reliable transmission means that the codewords can

be decoded at the receiver side of the channel with an arbitrary small

probability of error.

Joint source-channel coding

The joint source-channel coding theorem then combines the above two

theorems and shows that reliable transmission is possible as long as

the entropy of the source is below the channel capacity: H < C. This

means, that a two-stage coding process for separately designing most

efficient source and channel codes, is as efficient as considering the

two problems together [CT91].
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4.8.2 Problem Comparison

The joint source-channel coding theorem may also be viewed as an¬

swer to the question of the minimum channel capacity C required for

reliable transmission of source symbols with entropy H. This in fact

is exactly the approach of [Sha97], where it was noted that "the design

of a digital system is akin to the selection or development of an ap¬

propriate communication network topology with sufficient capacity C ".

In the following, we want to make this comparison more explicit. This

requires an approach that does not comply with the usual interpre¬
tation of information theory [Sha48, Abr63, CT91]. Table 4.3 sum¬

marizes the comparison of the transmission bound problem of infor¬

mation theory (IT) and the dissipation bound problem of low-power
VLSI (LP).

Given problem instance. In either case, a specific task is to be

performed for a given set of parameters t.

IT: Symbols emitted by a source with information content H

are to be transmitted over a noisy communication channel.

LP: A digital operation T is to be performed on a set of data

items with statistics Pr{.} in a given amount of time Tp.

Minimum cost. Both the transmission and processing task are to

be performed with regard to a specific cost measure, which shall

be minimized.

IT: The mathematical model for data transmission includes no

explicit cost measure. Here, cost is assumed to be the chan¬

nel capacity which must be provided for reliable transmis¬

sion8
.

LP: The processing task shall be performed using the least

amount of energy. Since processing time Tp is fixed, this

is synonymous to minimum power dissipation P.

8In practice, the cost of transmission usually is regarded as the number of chan¬

nel uses per symbol necessary for reliable communication, since this determines

the bandwidth needed. The number of channel uses per symbol corresponds to the

codeword length n, which in the present interpretation is part of the optimization
variable.
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Optimization variables. The minimum cost requirement shall be

met by means of a set of optimization variables.

IT: The required channel capacity can be minimized through
appropriate encoding of blocks of source symbols. This

includes the choice of codeword length n.

LP: Power dissipation is minimized by choosing an appropriate
RT-level architecture A^, binary data representation B{.},
gate-level architecture Ai», and supply voltage Vdd.

Cost function. A certain relation between the cost measure and the

other terms involved is assumed in either theory.

IT: Channel capacity C by definition is independent on how the

channel is used, i.e. is independent of the data encoding.
With optimum encoding, the required capacity C solely
depends on the entropy H of the source.

LP: The indispensable power dissipation depends both on the

processing task to be performed as well as on the actual

implementation of this task.

Lower Bound. The aim is to derive a lower bound on the respective
cost measure.

IT: The joint source-channel theorem gives a lower bound on

channel capacity C necessary for reliable transmission. The

proof employs a random-coding argument and does not

provide the minimizing encoding.

LP: The general lower bound on power dissipation, i.e. the so¬

lution to LBP-4 is unknown.

4.8.3 Implications

In information theory the cost measure (channel capacity) is inde¬

pendent of the optimization variable (encoding) by definition. This

is justified because in practice the channel and the encoder/decoder
units can be implemented separately. Hence, the lower bound for
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information theory low-power VLSI

problem instance

t = (H) t = (T,Pr{.},TP)
minimum cost

C->Min P ->• Min

optimization variables

z = (B{.}) z = (Am,B{.},A^,Vdd)
cost function

C = C(t) P = P(t, z)
lower bound

C>H ?

Table 4.3: Comparison of information-theoretic transmission and VLSI

power dissipation bound problem.

the cost measure could be derived without knowledge of the optimum

encoding.

In low-power VLSI, on the other hand, the cost measure (power)
depends on the optimization variable (hardware implementation).
This dependency of power dissipation on A^, B{.}, A^, and Vdd

certainly agrees with the physical reality that we wish to model. Us¬

ing a simplified cost function P(t) for stating the lower bound does

of course not decouple power dissipation and implementation in prac¬

tice. Nevertheless, we want this simplified model to agree with the

physical world, and hence are faced with requirement (4.14) for useful

rating of energy efficiency:

P(t) = P(t,z*), Vi.

Consequently, we conclude that the power dissipation bound prob¬
lem is different in nature from the information-theoretic transmission

bound problem. Only the special case LBP-3 can be solved in analogy
because power dissipation associated with optimum encoding B{.}* is

not included in the cost function, see section 4.5.1.
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4.9 Summary

First, the energy dissipation limits of todays MOS transistor based

VLSI technology have been discussed in the light of existing thermo¬

dynamic bounds. It was concluded that, from the energy efficiency

point of view, CMOS technology in conjunction with constant-voltage

charging and draining of capacitances is a suboptimal implementation
medium.

Then, a new view of minimum power dissipation in the context of data

statistics has been established by systematically combining the vari¬

ous parameters involved in the low-power VLSI design process. This

approach for the first time enables a classification of the lower bound

problem. Two of the resulting subproblems, i.e. minimum power dis¬

sipation for data transmission (LBP-3) and lower bound on supply

voltage (LBP-1), can be solved in principle. No solution for the most

general lower bound problem LBP-4 and the Boolean optimization

problem LBP-2 exist due to the lack of appropriate analytical models

for power dissipation.

However, the finding of an analytical power dissipation function

P = P(T,Pr{.},Tp, A^,B{.},A^>0-, Vdd) that universally applies to

any processing task, indeed would revolutionize low-power digital

design. Depending on which subproblem of LBP this model applies

to, low-power design at the corresponding level of abstraction would

become an automated process. On the other hand, we have shown

that an implementation-independent lower bound must be tight to

the true minimum dissipation, because a reliable rating of energy

efficiency for known implementations is otherwise impossible. There¬

fore, we conclude that there is no useful implementation-independent
lower bound on power dissipation.

An existing information-theoretic approach to minimum power

dissipation [Sha97] has been investigated in detail, and several

limitations of this theory have been uncovered. Furthermore,
the approach in [Sha97] has been identified to target only the

most simple subproblem within the proposed classification of the

lower bound problem, i.e. the lower bound on supply voltage (LBP-1).
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By means of a formal comparison it has been shown in this thesis that

the general lower bound problem on power dissipation is different in

nature from the information-theoretic transmission bound problem.
While information theory neglects the cost of optimizing the trans¬

mission, this is not appropriate for low-power VLSI processing. Only
in case of plain data links (LBP-3), the power dissipation bound arises

in direct analogy to information theory.
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Chapter 5

Energy-Efficient

Processing of Speech

5.1 Introduction

5.1.1 Motivation

Traditionally, hardware designers have tried to find economic arith¬

metic units by minimizing the total gate count. Low power dissipation
was assumed to follow. However, from chapter 3 it is clear that min¬

imum power dissipation hinges on switching activity which, in turn,
can be minimized by appropriate encoding as was shown in chapter 4.

The present chapter now shall combine the hardware designer's per¬

spective with the idea of minimizing power dissipation in consideration

of data statistics and switching activity.

Unlike [BMM+00], where data statistics has been employed to

reduce the switching activity on data links, this chapter exemplifies
data statistics as vehicle for low-power implementation of digital sig¬
nal processing (DSP) algorithms by means of application-specific de¬

sign [WKFFOO, WKFF01]. Finite impulse response (FIR) filtering
of speech data serves as an example. FIR filtering is, for instance, a

standard task for the realization of digital hearing instruments [KB98].
Currently, results of this chapter are being employed for the energy-

113
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efficient implementation of a noise-reduction algorithm in a commer¬

cial hearing instrument [Sch99]. In general, the results to be presented
shall support the designer of application-specific digital signal proces¬

sors in making decisions on data representation and arithmetic units.

5.1.2 Previous Work

A large number of approaches have been suggested to minimize the

power consumption of digital filters. Only those related to data

statistics will be cited here.

A technique, called approximate processing, has been suggested in

[LNC96] and was generalized in [NOC+97]. This technique dynami¬

cally adapts the filter order to changing input signal characteristics

such as to keep the stopband energy of the filtered signal below a

predefined threshold. Recently, an audio chip using this technique
in decimation and interpolation filters has been reported to achieve

power saving between 20% and 70% depending on signal statistics

[PanOO].

In [SRB97] the differential coefficients method (DCM) has been

proposed. The fundamental idea is to trade a long-coefficient

multiplication for a short one at the cost of some overhead due to

additional storage requirements. The authors examined this tradeoff

by means of an analytical energy cost model. The bottom line is

that DCM is effective only if the coefficient bit-width is appreciably
reduced by differentiation. The above idea has been generalized to

the decorrelating transformation (DECOR) in [RSH99a], such as to

extend the principle of differential encoding from the filter coefficients

to the filter input signal. However, the power savings that resulted

from applying DECOR to the filter input were actually due to data

word width reduction. In practice, such a reduction often will be

impossible since clipping of data samples cannot be tolerated. More¬

over, in [RSH99a] the authors employed the analytical energy cost

model from [SRB97] to evaluate DECOR, thereby disregarding the

effect of differential encoding on data statistics and thus, switching
activity. This chapter shall provide a more realistic appraisal of

differential encoding for speech filtering.



Speech Features and Coding 115

In [NS99] the authors employed data statistics to optimize the de¬

sign of a low-power FIR filter bank for digital hearing instruments

by means of asynchronous control and datapath logic. The present
work rests on the same idea of exploiting the statistical properties of

speech for low-power data processing at the example of FIR filtering.
However, the present work differs as it provides a comparative study
of alternative data encodings under various application parameters.

5.1.3 Outline

In section 5.2 the statistical features of speech are reviewed and coding
schemes suited for data processing are identified. Section 5.3 presents

an experimental study of the relation between word-level statistical

properties of speech and bit-level switching activity. In section 5.4

the target application and the associated reference architecture are

introduced. Subsequently, implementation details for alternative data

encodings are discussed. Finally, the encodings are experimentally
evaluated with respect to their energy efficiency in section 5.5.

5.2 Speech Features and Coding

5.2.1 Statistical Properties of Speech Data

Speech signals are inherently non-stationary with distinct short-term

and long-term statistical properties. Short-term properties refer to

speech segments of about 20
...

200 ms duration, while long-term char¬

acteristics refer to speech segments that are several orders of magni¬
tude longer [JN84].

Short-term characteristics of speech

Speech in general comprises two types of signals: quasi-periodic sig¬
nal components resulting from voiced speech (mostly vowels), and

noise-like components resulting from unvoiced speech (fricatives and

plosives). Quasi-periodic signals contain energy from about 100 Hz

up to 4.5 kHz. Noise-like signals contains frequency components up

to about 8 kHz but at a much lower energy level.
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bel / stdOc) / [kHz]

Figure 5.1: Long-term averaged probability density function (left) and

power spectral density (right) for benchmark speech sequences.

Long-term characteristics of speech

In the present context, the long-term behavior of speech is of inter¬

est as this determines average switching activity and hence average

power. This means that sufficiently long speech samples must be used

such as to have a typical share of quasi-periodic and noise-like signal

components. By averaging all statistical measures over a sufficiently

long period of time, speech is approximated as stationary signal.

Typical for the long-term behavior of speech is the so-called

Gamma probability density function [JN84], because small signal val¬

ues around zero are orders of magnitude more likely than values close

to the maximum amplitude. Figure 5.1 shows the probability density
function for two benchmark speech samples of twenty seconds duration

each [SQA]. The sequences represent a female and a male speaker,

articulating several sentences at natural speed in English. Despite the

similarity of their probability distributions, the sequences have differ¬

ent spectral properties, as can be seen in their power spectrum in

figure 5.1. The male voice has higher signal power for frequencies be¬

low 1/10 the sampling frequency fs = 16 kHz, while the female voice

contains considerably more energy at higher frequencies. Neverthe¬

less, correlation of adjacent samples, which is of primary importance
for switching activity, differs only marginally for female and male voice

(qx = 0.99 for the male vs. gx — 0.95 for the female speaker).
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Figure 5.2: Classification of low bit-rate speech coding techniques. Only
time-domain waveform coding is applicable to data processing.

5.2.2 Speech Coding Techniques

The term speech coding traditionally refers to employing the statis¬

tical properties of speech signals to reduce the required transmission

bit rate in communication systems by means of data compression.
Such coding techniques may be broadly divided into waveform coding
and source coding (vocoders), see figure 5.2. Hybrid codecs combine

methods from waveform and source coding to produce the best speech

quality at low bit rates [Kon94].

As will be seen, proper encoding of speech can also be useful for

low-power implementation of signal processing algorithms. In this

case, however, the choice of coding is limited to time-domain wave¬

form coding, because for the implementation of all codecs some time-

domain processing is required. Therefore, all codecs potentially ben¬

efit from efficient implementation of PCM systems. The following
coding schemes will be considered for low-power FIR filtering: lin¬

early quantized PCM, PCM with adaptive (APCM) and logarithmic

(log-PCM) quantization, and differential PCM (DPCM).



118 Energy-Efficient Processing of Speech

5.3 Activity Analysis for Speech Data

In section 4.5.2 theoretical lower bounds for the average number of

transitions per symbol for given word-level data characteristics were

discussed. However, minimum switching activity in general implies

complex and highly dissipative coding hardware. Furthermore, min¬

imum activity codes are not appropriate for efficient implementation
of arithmetic operations. For the word-level activity analysis in this

section, only fixed-length lossless encodings suitable for implementa¬
tion of processing algorithms will be considered. For analysis and

evaluation of lossy encodings, a meaningful signal quality measure is

indispensable. Such a quality measure will be inferred from the target

application in section 5.4.2.

5.3.1 Fixed-length Lossless Encodings

Assume a digital discrete-time speech signal

X(k) = [X(kTci)]{x) ,
fc = 0,l,... (5.1)

with — 1 < X(k) < 1, where [.j^ denotes quantization to (x) bits by

rounding to the nearest binary value. The codeword for X(k) is the

binary vector xk = (xq, xk,..., xkx^_^). The following four encodings
are considered:

PCM with 2's-complement representation (2sC). For this code,
the codeword xk is formed such that

<x)-l

X(k) = (-1) • xk0 + £ xk 2-'
. (5.2)

i=l

2sC is the most widely used representation for signed num¬

bers because it facilitates efficient implementation of addi¬

tion/subtraction. However, for speech signals where small val¬

ues around zero are orders of magnitude more likely than very

large values, the sign-extension of 2sC greatly inflates switching

activity.
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PCM with sign-magnitude representation (S&M). In this case,

the codeword xk is formed such that

(x)-l

X(k) = (-1)^ . £ xk . 2-«
. (5.3)

i=l

S&M representation conforms better to the characteristics of

speech, but implies more costly adders/subtracters.

Differential PCM with 2sC representation (D-2sC). The code¬

word xk is recursively constructed such that

<x)-l

X(k) - X(k - 1) = (-1) •*$+£>?• 2-«
. (5.4)

i=l

Since the amplitude of speech signals changes slowly over time,
the differentiation in (5.4) potentially reduces the dynamic

range. For the target application, differential encoding is as¬

sociated with the aforementioned DECOR transform, to which

we will return in section 5.4.4.

Differential PCM with S&M representation (D-S&M). In this

case, for the codeword xk holds

<x)-l

X(k) - X(k - 1) = (-l)*ofe . £ xk . 2-«
. (5.5)

i=l

5.3.2 Signal Parameters

Switching activities aXi (i — 0,..., (x) — 1) and the total number of

transitions per symbol

(x)-l

ax = ^2 axi (5.6)

shall be investigated experimentally subject to four signal parameters:
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Signal variance crx [dB]. This parameter corresponds to perceived
loudness and is defined as

<jx [dB] = 10 ^g10(lJ2(x(k)-ßx)2j
where px is the expected value.

Signal-to-noise ratio SNR [dB]. UX(k) = X(k)+N(k) with N(k)
being noise samples, this parameter is defined as

SNR[dB] = 10 • log10 -f .

Sampling frequency fs [kHz]. According to (5.1) this parameter

is defined as

fs = l/Ta -

Quantization resolution (x) [bit]. For fixed-length codes, number

of bits per symbol, data word width, and quantization resolution

(x) are synonyms.

The two speech sequences investigated in section 5.2.1 served as bench¬

mark signals for the experiments. For sake of brevity, only the main

results for the male speaker are reproduced here. Complete results are

given in [WKF00]. It was found that female voice in general induces

slightly higher switching activity due to lower temporal correlation re¬

sulting from increased spectral power at higher frequencies. However,
the qualitative behavior with respect to the above parameters is the

same for male and female speakers.

5.3.3 Switching Activity vs. Signal Parameters

Signal variance

The influence of signal power on switching activity is investigated by

fixing the sampling frequency to 16 kHz and the quantization resolu¬

tion to 16 bits. A sinusoidal signal sampled at its minima and maxima

defines the reference of o~x — 0 dB.
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Figure 5.3 shows the switching activity profiles for two grossly differ¬

ent loudness levels. In these plots, the left-most bit position denotes

the sign bit xo. The right-most position is the LSB. The table at

the bottom of figure 5.3 reports the absolute and relative number of

transitions per symbol, see (5.6). From the results in figure 5.3 the

following may be concluded:

• Word-level switching activity ax grows with increasing signal

power for all encodings considered.

• Absolute and relative activity savings1 of S&M over 2sC increase

with decreasing signal power, meaning 2sC being particularly
inefficient for low voice.

• Differential PCM with 2sC considerably amplifies switching ac¬

tivity not only for redundant but also for information bearing
bits.

• Differential PCM with S&M considerably reduces switching ac¬

tivity compared to PCM with S&M for all information bearing
bits. Activity savings of D-S&M over S&M therefore grow with

signal variance.

Signal-to-noise ratio

In order to explore different SNR, noise has been added to the speech

sequence. a%. of the target signal was kept constant such as to exclude

the influence of signal variance on switching activity for this set of

experiments.

Figure 5.4 shows the activity profiles for colored noise, which was

obtained by passing white noise through a filter with magnitude re¬

sponse similar to the power spectrum of the original speech signal.
Results for other noise types including multiple-speaker modeling are

given in [WKFOO]. From figure 5.4 the following implications follow:

• As signal quality deteriorates, switching activity grows for all

considered encodings.
1 Increased absolute savings correspond to a larger area enclosed by the activity

profiles under consideration. Relative savings may be inferred from the position
of this area: The higher up in the diagram the larger the relative savings.
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• Absolute activity savings of S&M over 2sC are largely unaffected

by the SNR. Relative savings marginally decline.

• Differential encoding becomes less effective with decreasing
SNR.

Sampling frequency

For some completely uncorrelated data source, the number of transi¬

tions per symbol ax is constant for any sampling frequency fs- Hence,

by virtue of (2.2), power dissipation linearly grows with fs- However,
this does not hold true for speech signals. Figure 5.5 typifies the re¬

lation between switching activity and sampling frequency for speech:

• As a consequence of increasing correlation, switching activity

ax reduces for higher sampling frequencies and hence, power

dissipation, as a function of fs, grows with smaller rate than for

uncorrelated signals.

• The advantage of S&M over 2sC diminishes for increasing sam¬

pling frequency. This can be explained by a smaller proportion
of sign changes taking place, which lessens the adverse effect of

sign-extension in 2sC representation.

• Because of increasing correlation between samples, differential

PCM becomes more efficient with raised sampling frequency.

Quantization resolution

Finally, by definition (5.6), switching activity ax will also be affected

by the number of bits per symbol used for encoding. Figure 5.6 depicts
the activity profiles and total activities for quantization resolutions of

12 and 24 bits. The experimental data reveal the following:

• Resolutions in excess of about sixteen bits will add random-like

high-activity bits to the data word and hence disproportionately
increase overall activity.

• Relative activity savings of S&M and D-S&M over 2sC decline

as the quantization resolution enhances.
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5.4 FIR Filtering of Speech Data

5.4.1 Target Application

The FIR filter algorithm is a prime candidate for data encoding, be¬

cause every data item is used multiple times in a generic operation,
i.e. multiply-accumulate (MAC). It is assumed, that an AT-tap FIR

filter operation

N-l

Y(k) = Y,cnX(k-n) (5.7)
n=0

is to be performed on an application-specific signal processor with

fixed-point arithmetic. Again, (x) is used to denote the number of

bits in the binary representation of signal X. The filter coefficients cn

are freely programmable but invariant during the period of operation.

Figure 5.7 shows the model employed for evaluating different data

codes. Power analysis is carried out for encoder/decoder, functional

data memory, and MAC unit. Since the focus is on exploiting data

statistics, the coefficient memory is not included in the power analysis,

although different data codes may infer specific coefficient codings.
For the same reason any potential symmetry in the coefficient vector

is not exploited.

5.4.2 Reference Architecture with 2sC Data

The reference architecture operates with data in linear PCM and 2sC

representation. Neither encoding nor decoding is necessary in this

case. Thus, in the evaluation model in figure 5.7, power is dissipated

only by the data memory and the MAC unit.

In [BG99] it was found that for a fully time-shared architecture

the direct form (DF) filter is more energy-efficient than the trans¬

posed form due to increased state-storage requirements in the latter.

Furthermore, for a time-shared architecture the transposed form poses

problems with the coefficient update in adaptive filtering. Hence, the

DF filter structure has been selected for the present investigations.
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Figure 5.7: Block diagram of evaluation model for data coding.

Data memory

Assume the data memory is to be built with standard-cell flip-flops.
There are basically three different schemes to realize the necessary

data storage and access for DF FIR filtering in a fully time-shared

architecture:

(1) circular shift register with fixed read/write positions,

(2) linear shift register with fixed write position and random read

access,

(3) register file with random read/write access.

Obviously, architecture (1) is the most area-efficient configuration
since it works without address generation overhead. However, with

regard to power consumption, it is the least desirable version since

the shift register must be clocked at N times the sampling frequency.
We experimentally found, see appendix D, that configurations (2)
and (3) are comparable in terms of area and power consumption for

a wide range of filter orders. However, architecture (3) with direct

read/write addressing permits to gate the clock signal. With this

feature, architecture (3) outperformed all other structures in view

of power dissipation. Hence, a structure as shown in figure 5.8 has

been selected for the data memory of the reference architecture. All

alternative architectures shall use the same memory structure but

possibly differ in data word width (x).
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MAC unit

The MAC unit performs standard 2sC multiplication by means of a

parallel multiplier. As shown in figure 5.9 the coefficient word width

is presumed equal to the data word width, resulting in a product
width of 2(re) — 1 bits2. The product is truncated such as to retain (a)
most-significant bits for the accumulator A with 2(re) — 1 > (a) > (re).
Finally, the filter output signal Y(k) is truncated to the input data

word width of (re) bits.

Theoretically, for an arbitrary N-tap filter |~log2(AT)] guard bits

have to be provided for the accumulator in order to avoid arithmetic

overflow. However, given filter coefficients which correspond to prac¬

tical impulse responses and the particular input data characteristic at

hand, it is extremely unlikely that the full theoretical range will be

exercised. In fact, for all benchmark signals from section 5.3 and over

a wide range of filter specifications the accumulator can do without

any guard bit. Therefore, zero guard bits were used for the reference

as well as for any alternative architecture.

Formally, the filter operation performed by the reference imple¬
mentation (PCM-2sC) can be summarized as

X'(k) = X(k)
A(n + 1) = [cn-X'(k-n)\{a)+A(n)

Y'(k) = [A(N)\{x) (5-8)

Y(k) = Y'(k)

(n = 0,..., N — 1; a(0) = 0), where [x\w denotes the truncation of

signal re in 2sC representation to w bits (rounding towards —oo).

Quality measure

The accumulator width (a) of the reference architecture determines

the target quality of the filtered signal, which is assessed as the signal-
to-quantization-noise ratio

2Since both operands are confined to —1 < X(k), cn < 1 the product will fall in

the same range. Therefore, 2((x) — 1) bits are required for the product magnitude,
plus one bit for the product sign.
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SQNRfdB] = 10-log10—^-^ (5.9)

^(Yrlk}-Y[k})2
k=i

where Y and Yr denote the mean-compensated output signal as¬

sociated with full and reduced precision accumulation, respectively.

SQNR is the previously mentioned quality measure that permits

meaningful evaluation of lossy data encodings. For (a) < 2(re) — 1

such codings in principle allow to shift part of the approximation from

within the MAC unit to the preceding encoder unit, which potentially

simplifies multiplication.

5.4.3 Sign-Magnitude Representation

As was seen in section 5.3, S&M representation substantially reduces

the average switching activity of binary encoded speech data streams

compared to 2sC. S&M offers the advantage of easy implementation of

many arithmetic operations. Particularly multiplication of S&M num¬

bers is straightforward, since it simply requires an unsigned multipli¬
cation of magnitudes and XOR-ing the input sign bits. Unfortunately,
the most basic arithmetic operation, i.e. addition of two numbers, is

considerably more complicated with S&M than with 2sC. It is this

fact that has prevented the common use of S&M representation for

DSP implementations.

However, since multiplication is more costly than addition, S&M

is an attractive alternative to 2sC for DSP applications, even when

the statistical properties of the application data are left aside. Two

alternative S&M MAC units based on S&M and 2sC addition have

been investigated. In either case the same unsigned multiplier is used.

S&M accumulation

Addition of two S&M numbers can be implemented by a l's-

complement adder with end-around carry signal [Hwa79]. This re¬

quires conditional inversion of one input operand as well as of the

sum output, see figure 5.11. For the application at hand this has the
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advantage of operating the accumulator with the preferred S&M rep¬

resentation. Furthermore, when the S&M product is truncated prior
to accumulation, the error introduced will in general be lower than in

the reference implementation. This is because truncation of 2sC num¬

bers corresponds to rounding towards minus infinity, see figure 5.10,
which will cause the error to build up during accumulation of indi¬

vidual filter tap results. On the other hand, pruning S&M numbers

complies with rounding towards zero and the error tends to average

out over several filter taps.

2sC

+• )K 4

_22» _2i-<«> o 21"<a) 22"<a>

S&M

1( 1( t Y Y
_22-<a> _2l-<a> Q 21"<") 22"^

Figure 5.10: Truncation for 2sC and S&M numbers.

The above benefits of S&M accumulation come at the expense of

increased activity in the adder circuitry due to the end-around carry

signal and pre- and post-conversion overhead. Besides, although
a l's-complement adder with end-around carry is algorithmically

stable, oscillation may occur in the hardware implementation due to

skewed input signals. To eliminate oscillation, the end-around carry

signal has been gated with a clock-derived enable signal as shown in

figure 5.11.

The filter operation with S&M accumulation can be formally described

as follows:

X'(k) = {X(k)}SScM
A(n + 1) = [cn-X'(k-n)]{a)+A(n)

Y'(k) = [A(N)]{X)
Y(k) = {Y'(k)}2sC

(5.10)

where [X]w denotes the truncation to w bits of signal X in S&M

representation.
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Figure 5.11: S&M addition with gated end-around carry signal.

2sC accumulation

To facilitate a more simple addition, the S&M product may be

converted to 2sC. Precise conversion would imply the circuitry
shown in figure 5.12(a), where the extra row of 2(rc) — 2 half-adder

cells is undesirable for energy efficiency reasons. Since truncation

is performed post conversion, the biased 2sC truncation error is

associated with this architecture. Approximate conversion from S&M

to 2sC as shown in figure 5.12(b) is not only less costly, but at the

same time accomplishes the unbiased rounding of S&M truncation.

In this case, the sign-bit of the product is fed as carry input to the

accumulating adder, which implies almost no overhead.

With the conversion as shown in figure 5.12(b), the formal filter de¬

scription for 2sC accumulation is

X'(k) = {X(k)}SScM
A(n + 1) = {[cn-X'(k-n)]{a)}2sC + A(n)

Y'(k) = [A(N)\{X)
Y(k) = Y'(k) .

(5.11)

Note that in the occurrence of 2sC accumulation, no explicit decoder

unit is required.
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Figure 5.12: Conversion of the S&M product for 2sC accumulation with

(a) truncation post-conversion and (b) truncation pre-conversion.

5.4.4 Differential Encoding

Differential encoding employs the high correlation between consecu¬

tive samples to remove short-term redundancy in the speech signal.
DPCM corresponds to the decorrelating transform DECOR [RSH99a],
when applied to the input data stream. In DECOR the filter transfer

function is multiplied and divided by the same polynomial.

Y(z) = X(z)-(l + aZ-^r-H(z)-{1 + az_ß)-ß\m
(5.12)

Since correlation is highest between adjacent speech samples the ob¬

vious choice for a and ß in (5.12) is a = —1 and ß = 1. Parameter

m determines the number of recursive difference operations that are

applied to the input data stream. Figure 5.13 depicts the system
architecture for a = —1, ß — 1, m = 1.

With this choice of parameters, en- and decoder units are par¬

ticularly simple in that they require no multiplication. However, a
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Figure 5.13: DECOR transform for a = —1, ß = m = 1.

key obstacle in a practical realization of this transform is the infinite-

impulse response (IIR) operation 1/(1 — z~x) to be performed in the

decoder. The pole on the unit circle is only canceled by the preceding
feed-forward section if finite-precision effects are avoided. This has

two important consequences which will be discussed next.

Error propagation

Most of the time the difference between adjacent speech samples
will have a smaller dynamic range than the original signal. Thus,
in [RSH99a], power savings were based on word width reduction by

allowing for deterioration of the SQNR. However, the decoding oper¬

ation 1/(1 — z~x) will propagate the smallest error in any of the filter

output samples to all subsequent samples. Thus, there is a risk of

not achieving the target SQNR of the reference implementation. To

exclude error propagation, the differential input is represented with

(rc)-l-l bits (for m = 1). Although this additional bit was found to be

redundant for all speech signals investigated in section 5.3, it seems

to be inevitable from a practical point of view, whenever the input

sequence is not a priori known.

Hence, due to error propagation, the IIR operation of the decoder

restricts the choice of word width for the differential input .

Error accumulation

Assume a certain number of bits being truncated from the multiplier

output prior to accumulation and let

eA(k) = AYr(k)-AY(k) (5.13)

be the corresponding error associated with the differential filter out¬

put. Then, by recursively applying Y(k) = Y(k — 1) + AY(k) and
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using (5.13), the error in the decoded output signal becomes

e(k) = Yr(k)-Y(k)
k k

= yr(o) + X>yr(0-y(o)-X>y(i)
i=l i=l

k

= e(0) + J>A(i). (5.14)
i=l

From (5.14) it is clear, that any non-zero mean error induced dur¬

ing the filter operation will accumulate in the IIR decoder and con¬

sequently spoil the SQNR. To avoid this, the authors in [RSH99a]
suggested to perform true rounding instead of truncation for reduc¬

ing the product word width. However, rounding only accomplishes
a zero mean error if the original signal itself has zero mean, see fig¬
ure 5.10. This, in general, can not be justified. And even if assumed

for the filter input signal, a DC bias may result from multiplication
with finite-precision filter coefficients.

Thus, the only way to exclude error accumulation in practice, is

to refrain from word size reduction in the MAC unit.

Practical implementation of DECOR

The preceding discussion suggests that the statistical properties of

speech cannot be utilized for low-power computation by differential

encoding when targeting synchronous bit-parallel processing. How¬

ever, as shown in section 5.3, differential encoding reduces average

switching activity if used in conjunction with S&M representation
even for the nominal word width (re') = (rc)+l. Therefore, the follow¬

ing differential filter implementation has been chosen:

X'(k) = {X(k)-X(k-l)}S&cM
A(n + 1) = cn-Xf(k-n) + A(n) . .

Y'(k) = {A(N)}2sC + Y'(k-l)
[bAb)

Y(k) = I7'(*)J<*>.

To avoid error accumulation, truncation is only performed at the de¬

coder output following the IIR operation.
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With this implementation, the experimental evaluation in sec¬

tion 5.5 exclusively marks the low-power potential of DPCM in view

of switching activity reduction, permitting a more realistic assess¬

ment than in [RSH99a], where power savings were bound to word size

diminution.

5.4.5 Adaptive Encoding

Adaptive PCM (APCM) for low-rate communication models speech
as non-stationary signal to accommodate the dynamic range with a

fewer number of bits. For the target application, this translates into

a reduction in the data path width.

Adaptation scheme

Of the various adaptation schemes proposed in the communication

framework, feed-forward instantaneous gain adaption best suites the

application at hand. Instantaneous adaption means that each indi¬

vidual data sample is approximated as

X(k) ~ 2~G^ M(k) . (5.16)

Feed-forward adaption is akin to sending the gain exponent G(k) to¬

gether with the mantissa M(k) through the data path in order to

control the computation. The data path thus must be capable of

floating point arithmetic.

The mantissa word width (m) is determined by SQNR require¬
ments and the word width of the gain exponent is given as

(g) = riog2«rr)-(m) + l)l (5.17)

if original data samples were represented using (re) bits. Thus, approx¬

imation (5.16) provides a reduction in the overall data word width,
i.e.

(m) + (g) < (re) (5.18)

as long as 0 < (m) < (x) — 2.

Figure 5.14 illustrates the formation of the mantissa codeword mk

and gain exponent codeword gk from the original 2sC codeword for
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Figure 5.14: Formation of mantissa codeword mk and gain exponent

codeword gk from the 2sC codeword xk in APCM.

(re) = 16 and (m) = 10. The neglected bits at the left-hand side

of the mantissa window correspond to redundant information, while

truncating bits at the right-hand side of the window will introduce

noise. Adaptation of S&M data can be performed accordingly.

Implementation of target application

Based on (5.16) the following implementation has been chosen for

evaluating the energy efficiency of APCM:

X'(k) = ({M(k)}s&M , G(k))
A(n + 1) = {[cn M(k - n) < G(k - n)]{a)}2sc + A(n)

Y'(k) = [A(N)\{X)
Y(k) = Y'(k)

(5.19)
The MAC unit utilizes floating point arithmetic rather than fixed

point arithmetic as in the reference implementation. Using gain
factor G(k), the product is rescaled to the accumulator word width,
which is governed by the target SQNR. With this scheme, potential

power savings of APCM are based on appropriate rounding of

individual data samples prior to multiplication.

Alternative implementations of APCM are possible. First, a unique
scale factor may be used for N consecutive input samples. This scale
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factor is updated at the beginning of each filter cycle. This scheme

corresponds to block floating point arithmetic [Opp70, RB97] and

requires storage of the original data samples in the functional memory,

but has the advantage that rescaling has to be performed only for filter

output values. The effectiveness of this method strongly depends on

the filter order and is especially appropriate when non-overlapping
blocks of input data are to be processed.

Second, in addition to data samples, filter coefficients may be adap-

tively scaled if so permitted by the impulse response of the filter at

hand. Since the focus here is on employing the data statistics for low-

power computation independently of specific filter characteristics the

above two alternatives are not further considered.

5.4.6 Logarithmic Encoding

As a standard technique for speech compression, logarithmic quan¬

tization employs the long-term statistical properties of speech to re¬

duce the transmission bit rate. For data processing, the main at¬

traction of logarithmic encoding is the substitution of costly multi¬

plication in the linear domain by simple addition in the logarithmic
domain. On the other hand, addition in the logarithmic domain calls

for lookup tables (LUT) which grow exponentially with increasing

precision [SA75, Lew90].
With the approximation technique explained below, LUTs for the

conversion between logarithmic and linear domains are smaller than

those required for addition. Since in the target application the final fil¬

ter output must be in linear PCM format, anti-logarithm is performed
within the MAC unit prior to accumulation.

Approximation of logarithm

To convert between logarithmic and linear domains one could either

use direct table-lookup or some approximation technique. Depending
on the target SQNR, the data word width may be significantly re¬

duced if direct table-lookup is employed, i.e. (re') < (re). However, the

conversion overhead quickly becomes unacceptable even for medium-

scale (re).
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On the other hand, the linear approximation log2(l + re) «

re (0 < re < 1) proposed in [Mit62] permits efficient implementation,
but is too imprecise to attain any practical SQNR for the target

application. The piecewise linear approximation strategy from

[CZV65] improves conversion accuracy but involves multiplications.
The method proposed in [SBG99] enhances precision by means of

a corrective addition. This approach will be modified, such that

the conversion accuracy can be adjusted to meet the SQNR constraint.

Let X > 1, then the logarithm can be written as3

log(X) = log(27 + F27)
= I + log(l + F)
= I + F + C(F) . (5.20)

Integer part I of the logarithm is formed by means of a simple leading-
one detector and a small LUT. The fractional part log(l + F) of the

logarithm is formed by adding a correction term C(F) to F, the linear

approximation of log(l + F). There holds

C(F) = log(l + F) - F > 0, (0 < F < 1) (5.21)

and

dC(F)
dF

0<F<F*

for F = F* (5.22)
F* < F < 1

.

F* « 0.4427, and C(F*) « 0.0861 being the maximum of the correc¬

tion term, see figure 5.15.

In practice, the correction term C(F) must be realized with finite

precision, and (5.20) becomes an approximation. The monotonie

behavior of C(F) can be employed for implementing C(F) as LUT

whose number of entries may be minimized in regard of the target

SQNR by appropriate nonuniform quantization of F. Next to the

number of entries, the number of bits to represent C(F) is the second

parameter for the optimization of this LUT. Figure 5.16 shows the

principle and a numerical example for conversion from the linear to

3In the present context, speech samples X(k) are interpreted as integer num¬

bers, and logarithm always is to the base two.
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Figure 5.15: Linear approximation log(l + F) « F for 0 < F < 1 with

maximum error C(F*).

the logarithmic domain.

A similar approach can be used for the implementation of anti-

logarithm by employing the approximation

F « log(l + F - C(l - F)) (0 < F < 1) . (5.23)

With this, the anti-logarithm for some given integer part I and frac¬

tional part F becomes

X = 2I+F

^ 272log(1+F_c(1_F))

« 27(1 + F-C(1-F)) . (5.24)

This is easily implemented by putting a '1' in the appropriate posi¬
tion according to I and appending the corrected fractional part. The

symmetry in the correction terms for logarithm and anti-logarithm is

an interesting feature, which could be employed such as to use only
one common LUT. In the present case this was not done because of

the required modification of the overall filter architecture compared
to the reference implementation.
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Figure 5.16: Architecture for logarithmic encoding with linear approxima¬
tion and additive correction (left). Numerical example log2(235) = 0.7877

for LUT with five entries and three bits resolution for the correction terms

(right).

Implementation of target application

With (5.20) and (5.24) the FIR filter based on logarithmic encoding

(log-PCM) can hence be given as

X'(k) = Ix(h) + Fx(k) + C(Fx(k))
P(n) = log(|cn|) + X'(fc-n)

A(n + 1) = {Sx(k-n)SCn[2I-(n\l + Fp(n)

Cll-Fpinm^J^ + Ain)

Y'(k) = [A(N)\{X)
Y(k) = Y>(k)

(5.25)

with Ix and Fx being integer and fractional part of X in the loga¬
rithmic domain as above, and Sx denoting the sign of X.
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5.5 Evaluation of Coding Schemes

5.5.1 Application Parameters

In order to cover a wide range of typical situations in speech filtering,
the different codings have been evaluated at extreme points of the

following parameters:

A/D-conversion bit rate I" [bit/s]. This parameter comprises sam¬

pling frequency fs and quantization resolution (re), that were

dealt with separately in section 5.3 in order to reveal their influ¬

ence on switching activity. The two considered extreme points
are II = 96 kbit/s and I# = 705.6 kbit/s, corresponding to

telephony (toll) and CD-quality (see table 5.1).

Signal quality. This embraces the remaining free parameters from

section 5.3, i.e. signal power a2 and signal-to-noise ratio SNR.

Based on the results from section 5.3, the following signals were

chosen: male speaker with high SNR to represent high signal

quality [SQA], and faint colored noise to emulate low signal
quality, see table 5.1. The colored noise was formed by passing
Gaussian white noise through a filter with a magnitude response

that matches the long-term power spectral density of speech.

Processing accuracy. For the target application processing accu¬

racy is associated with the internal accumulator word width and

rounding scheme used for summation over all product terms, and

is assessed by the SQNR as defined in (5.9). The two extreme

points to be investigated coincide with full accumulator width

and accumulator width equal to input data width in the refer¬

ence architecture. The corresponding SQNR of the high quality

signal sets the target on processing accuracy for any alternative

coding scheme.

5.5.2 Power Estimation Model

Since encoding for data processing has a joint impact on switching

activity, circuit structure, and type of arithmetic units, analytical

power cost models seem inappropriate in this case. Particularly
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Parameter Logo Specification

Bit rate
h (re) = 12 bit, fs = S kHz

Ih (re) = 16 bit, fs = 44.1 kHz

Signal
quality

Ql al = -50 dB, SNR = 0 dB

Qh <t2x = -20 dB, SNR = 40 dB

Processing

accuracy

AL (a) = (x)

Ah (a) = 2(re)-l

Table 5.1: Specification of application parameters.

simple counting of basic operations as being performed in [SRB97]
and [RSH99a] is hard to justify. Instead, a simulation approach
to power estimation has been taken here. Although it does not

guarantee exact results in absolute terms, it is considered sufficient

for relative comparisons between alternatives.

For each encoding scheme corresponding gate-level circuits were de¬

signed for encoder/decoder, MAC unit and data memory. All units

were described in VHDL and then synthesized and mapped to a

0.25/xm CMOS standard cell library. Synthesis and technology map¬

ping were performed using Synopsys DesignCompiler with optimiza¬
tion directed towards minimum area implementation. Consistent low-

level architectures were selected for adders (ripple-carry) and multipli¬
ers (signed or unsigned array multiplication with carry-save addition

of partial products) to reduce the influence of gate-level implementa¬
tion details.

Subsequently, the gate-level netlist of each unit has been exercised

with corresponding stimuli. Activities resulting from spurious tran¬

sitions have been captured by utilizing gate-delay models provided

by the technology library. The functionality of each circuit has been

verified by comparing gate-level responses with expected responses as

obtained from bit-true behavioral models written in Matlab.

The node toggle information so acquired was annotated on the

netlist employing Synopsys DesignPower. Finally, average power

consumption has been computed using estimated capacitive loads.
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Note that the terms power and energy dissipation are synonyms in

the present case of real-time operation and fixed data rate.

5.5.3 Experimental Results and Discussion

Experimental results

A N — 17-tap low-pass filter with cutoff frequency of 0.65 • /s/2 was

applied to the benchmark signals with statistics as given in table 5.1.

The high-amplitude signals Qu had a duration of eight seconds, i.e.

64'000 (352'800) samples at 8 (44.1) kHz, and were used for SQNR

computations. For the noise signals Ql lO'OOO samples were simu¬

lated. The above choice of N and number of data samples is a com¬

promise between sufficient insensitivity of the results on the particular

filter/data characteristic and simulation run time.

Table 5.2 shows the estimated energy consumption per processed
data sample across implementation alternatives and application pa¬

rameters. For each filter the total energy use is split into en¬

coder/decoder (Cod), data memory (Mem) and MAC unit.

Discussion

Three general conclusions can be drawn from the results in table 5.2:

• The total dissipation in the reference implementation (5.8) is

clearly dominated by the MAC unit, which implies that provi¬
sions to reduce total power must attack here.

• Energy use of the reference implementation is relatively insen¬

sitive to signal amplitude, i.e. processing of Ql takes the same

(or even more) energy as processing Qh-

Any of the alternatives investigated outperforms PCM-2sC. Al¬

though there is no single optimal implementation for all pa¬

rameter sets, differences between the alternative encodings are

relatively minor. Therefore, other criteria such as area cost may

be considered for rating the coding schemes.
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II Ih

Coding Unit AL AH Al AH

PCM-2sC as in (5.8)

Cod

Mem

Mac

0.0

4.9

3.4

0.0

4.9

4.0

0.0

6.3

6.0

0.0

6.3

6.6

E 8.3 8.9 12.3 12.9

PCM-S&M as in (5.10)

Cod

Mem

Mac

0.2

4.9

2.9

0.2

4.9

3.5

0.3

6.3

5.4

0.3

6.3

6.1

E 8.0 8.6 12.0 12.7

PCM-S&M as in (5.11)

Cod

Mem

Mac

0.1

4.9

2.8

0.1

4.9

3.3

0.2

6.3

5.3

0.2

6.3

6.0

E 7.8 8.3 11.8 12.5

DPCM-S&M as in (5.15)

Cod

Mem

Mac

n.a.

n.a.

n.a.

1.3

5.2

3.6

n.a.

n.a.

n.a.

1.8

6.6

6.3

E n.a. 10.1 n.a. 14.7

APCM-S&M as in (5.19)

Cod

Mem

Mac

0.3

4.5

2.3

0.2

4.8

3.2

0.5

5.9

4.3

0.4

6.2

5.4

E 7.1 8.2 10.7 12.0

Log-PCM as in (5.25)

Cod

Mem

Mac

0.6

4.9

1.4

n.a.

n.a.

n.a.

2.2*

6.3*

2.9*

n.a.

n.a.

n.a.

E 6.9 n.a. 11.4* n.a.

*SC*^\R 10 dl below tairget

Table 5.3: Cell area [10
2 mm2] of FIR filter processor with different

encodings.

Table 5.3 shows cell area figures corresponding to the energy evalu¬

ations from table 5.2. Since the same hardware units are used for

processing of high- and low-quality signals, parameters Ql and Qh
do not appear in table 5.3.

The results in table 5.2 and 5.3 permit the following statements for

the alternative data encodings:

PCM-S&M. The S&M implementations (5.10) and (5.11) differ only

marginally in their energy and area usage, with (5.11), which is

based on 2sC accumulation, being slightly more efficient. Com-
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pared to PCM-2sC, substantial energy savings are achieved.

Reduction is especially high for the low-amplitude signal Ql
which is in accordance with observations from section 5.3. Fur¬

thermore, energy savings of PCM-S&M are accompanied by a

slightly enhanced area economy of about 5%.

DPCM-S&M. Because of error accumulation and propagation, fil¬

tering of differentially encoded data is always to be performed
with accurate multiply-accumulate (see section 5.4.4). There¬

fore, energy and area results are identical for Al and Ah- Com¬

pared with PCM-S&M, DPCM further decreases energy use in

case of high signal amplitude Qh and high processing accuracy

Ah -
This decrease comes at the expense of an area penalty of

about 15%, however.

APCM-S&M. Adaptive quantization (5.19) does not reduce overall

dissipation relative to PCM-S&M. Even in the data memory,

energy consumption is only slightly better because no signifi¬
cant reduction of the overall data word width was achieved. For

example, for low processing accuracy Al, the data word width

could be reduced by four bits in case of both bit rates II and

Ih- However, since three bits are required to encode the cor¬

responding gain exponent, the net input word width reduction

is only one bit. On the other hand, area cost in case of low

processing accuracy Al is about 10% below that of PCM-S&M.

Log-PCM. Logarithmic quantization is only applicable to low- ac¬

curacy processing, because unrealistic conversion precision be¬

tween linear and logarithmic domain is required otherwise. For

low bit rate II and high signal amplitude Qh, Log-PCM does

with less energy than PCM-S&M. In this case C(F) in (5.20)
was manually optimized such that the required SQNR could be

attained with a small (4 x 3)-bit LUT containing five distinct

correction terms, see figure 5.16. Besides, the area cost was re¬

duced by about 12% compared to PCM-S&M.

To meet the target processing accuracy for the high-amplitude

signal Qh, a considerably larger LUT is required. Optimizing
a 7 x 7 bit LUT for eighty distinct correction terms, processing

accuracy of 10 dB below that of the reference implementation
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was achieved. Since in this case energy consumption and area

cost already exceed that of other encodings, further expansion
of the LUT's complexity is not beneficial.

5.5.4 Derivation of General Coding Guidelines

General guidelines for the choice of coding in FIR filtering of speech
data shall be derived from the results in table 5.2. Since the respective

coding overhead scales with the number of filter tapsAf, the energy

efficiency of the encoding schemes depends on N.

In order to extrapolate from filter order, the following assumption
is made with respect to data memory and MAC unit: Energy use per

data sample grows linearly with the number of filter taps N. For the

data memory this fact has been experimentally verified in the range

8 < N < 128, see figure D.2. For the MAC unit this assumption is

justified because no particular filter characteristic is assumed here.

The overall energy consumption per data sample E%£le can thus

be written as function of the number of filter taps:

Jpz2 I J\J\ rpCod i TpMem , rpMac
sample^ ) sample ' sample ' -^sample

= EZtpie + N ( E% + <;c ) . (5.26)

Coding energy per sample, E^°^ le,
is directly given by table 5.2.

Energy use per filter tap for data memory and Mac unit Effpm
and EffpC, respectively, are obtained by dividing the corresponding
values in table 5.2 by N = 17, i.e. the number of taps the results

were obtained for.

Figure 5.17 visualizes (5.26) by showing relative energy dissipation
when using alternative encodings at the chosen points of the param¬

eter field. From these curves it is clear that the relative merits of the

various coding schemes do not change beyond eight filter taps or so.

Furthermore, it can be concluded that suitable data recoding is bene¬

ficial in terms of energy dissipation even for a single MAC operation.
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Figure 5.17: Overall energy dissipation relative to PCM-2sC [%] as func¬

tion of number of filter taps N for low (high) bit rate II (Ih) and process¬

ing accuracy Al (Ah)- Solid (dashed) lines correspond to high (low) signal

amplitude Qh (Ql)- Encoding schemes that are not available for certain

parameter settings have been dropped.
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processing

accuracy

A

filter

order
AT

Figure 5.18: Guideline for the choice of energy-efficient encoding in the

three-dimensional application space of speech filtering.

Since in most applications signal amplitude will vary, the decision

as to which encoding is preferable in a particular situation shall be

based on appropriate weighting of power savings associated to Ql and

Qh- Because high-amplitude signals imply higher absolute energy

dissipation than noise-like signals, Qh should in general be weighted

stronger.

According to this policy, figure 5.18 gives a coarse guideline for

the choice of energy-efficient encoding in the three-dimensional ap¬

plication space of speech filtering, spanned by parameters bit rate,

processing accuracy, and number of MAC operations. In this figure,
DPCM and log-PCM relate to (5.15) and (5.25) as before. (A)PCM
indicates that, depending on actual word size reduction that can be

realized, it might be beneficial to combine S&M with adaptation as

in (5.19).
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5.6 Summary

Waveform coding techniques such as PCM with sign-magnitude rep¬

resentation, differential PCM, adaptive and logarithmic quantization
have been investigated for low-power digital filtering of speech data.

Depending on bit rate, processing accuracy, and number of filter taps,

guidelines for the choice of coding in application-specific digital signal

processors have been established.

Experimental results confirmed linear PCM with sign-magnitude

representation as universal coding for energy-efficient implementation
of algorithms dominated by multiply-accumulate operations. Depend¬

ing on signal characteristics and processing accuracy, S&M can save

25-75% of the energy in a single-tap filter with 2's-complement arith¬

metic. With increasing filter order, other encodings become even more

efficient. Differential encoding in conjunction with S&M is particu¬

larly useful in case of high processing accuracy and high bit rate. With

the proposed circuit structure for linear approximation of logarithms,

log-PCM proved very energy-efficient for low processing accuracy and

low bit rates.

Furthermore, experimental results imply that the coding overhead

for the encoding techniques considered is small enough to justify re-

coding of speech data even for a single multiply-accumulate operation.

Although the results were obtained for FIR filters, the presented en¬

coding techniques and corresponding arithmetic units may as well be

adapted to IIR filters and other processing algorithms dominated by

multiply-accumulate operations.



Chapter 6

Concluding Remarks

This thesis has explored three major aspects of low-power digital VLSI

design in the context of data statistics: estimation of switching activ¬

ity in logic circuits using probabilistic techniques, lower bounds on

power dissipation for a given processing task, and filtering of speech
data as example for practical low-power design. The essence of the

achieved results and conclusions has been given in the introductory
section 1.2.3. More detailed accounts have been provided in the sum¬

mary sections of chapter 3 (pp. 56), chapter 4 (pp. 110), and chapter 5

(p. 150).
This concluding chapter shall reflect on the prospects for practical

application of the work presented in this thesis, and provide sugges¬

tions for future work.

6.1 Prospects for Practical Application

Switching activity estimation. Probabilistic activity estimation is

a fascinating topic that has stimulated an enormous amount of

work within the VLSI research community. On the other hand,
it is barely used in practice. This paradox is easily explained by
the existence of a more simple alternative, i.e. logic simulation.

Even if one could show any probabilistic approach to handle the

runtime-accuracy tradeoff more efficiently, which on a fair basis
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is notoriously difficult to do, we would not expect this situation

to change drastically.

There is, however, one application which might represent an

exception: Activity-driven gate-level power optimization. The

need to cope with a circuit structure that changes during the

optimization process could render the shift from a well-tried

to an unfamiliar technique necessary. A shift which otherwise

seems to go against the force of habit.

Lower bound on power dissipation. Compared to the overall

amount of references on low-power digital VLSI available, rel¬

atively little work has been reported on the conceptual level,
which almost inevitably would lead one to the question of a

lower bound on power dissipation. Since practical implications
are profound, this fact must be ascribed to the difficulty of the

problem and the restricted prospect of success to solve it.

One existing attempt to tackle the lower bound problem is

[Sha97]. However, in section 4.7 this approach was shown to

suffer from a number of limitations although, according to our

taxonomy, it only attacks the most simple subproblem of the

lower bound issue. Rightfully, we have to admit not to have

found the general solution either, even though at the very outset

we fancied this possibility. Now, with the conjecture that there

can be no useful implementation-independent lower bound, we

are much less euphoric concerning a general solution. As there

is little hope that an analytical power dissipation model which

comprises all design parameters can be found, a general low-

power design theory is out of sight. Therefore, ingenuity and

experience will remain desirable features for low-power digital
VLSI designers.

Low-power design in consideration of data statistics. In the

absence of a general low-power design theory, the practical util¬

ity of data statistics for power reduction has been demonstrated

by means of an example, i.e. FIR filtering of speech data. To

be able to compare the energy efficiency of various data coding

schemes, several coding and arithmetic units were designed and

optimized manually at the gate level. Since much of this labori-
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ous work is specific to the application at hand, the correspond¬

ing optimization process is hard to automate, even though a

hardware description language and synthesis environment which

supports more than the ordinary 2's-complement number repre¬

sentation would be helpful.

However, any time-consuming search in the design space is in

deep contrast to today's shorter product development cycles

imposed by competitive pressure. In the light of system-level

design languages such as SystemC, it appears that this pres¬

sure sometimes leads to ranking power dissipation below time-

to-market, even for typical low-power applications.

6.2 Future Work

The following suggestions for future work can be given:

Switching activity estimation The extension of the proposed cor¬

relation approximation technique to circuits with sequential
feedback would be valuable. This approximation then could

be incorporated into a tool for the analysis of feedback circuits.

Of course, the integration of the proposed activity estimation

scheme in a gate-level power estimation/optimization tool would

be a desirable continuation of this thesis.

Lower bound on power dissipation Potential future work on the

lower bound problem seems most realistic for the subproblem
"Boolean Optimization" (LBP-2) with the simplifying assump¬

tions of a fixed supply voltage and a restricted set of logic gates.

Practical low-power design The waveform coding techniques in¬

vestigated for FIR filtering of speech could be evaluated for other

DSP operations that are frequently encountered in audio appli¬

cations, e.g. discrete Fourier or cosine transform. Furthermore,
a similar investigation for typical DSP data other than speech,
such as music, video or multimedia data, would be interesting.
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Appendix A

Basics of Probability

Theory

This appendix reviews basic concepts from probability theory. In

the context of digital systems the discussion is limited to probability
measures for discrete events. The treatment is neither complete nor

rigorous, but adapted to the needs in the context of probabilistic ac¬

tivity calculation in chapter 3. More information on the subject can

be found for instance in [SW86, BS91].

Random Variables

Let sample space Q be a finite set of events u. Then, a discrete

random variable X formally is a mapping X : Q —» JR. For simplicity
we assume Q, C Z and X(w) = u

,
cj £ Q. The probability mass

function (pmf) p(x) of X is defined as

p(x) = Pr{X = x} (A.l)

for all x G Q. Thus, the pmf fully specifies the statistical properties
ofX.

The above notation naturally extends to random vectors X =

(Xi,..., Xn) with Xi (i = 1,...,n) being random variables. The
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joint pmf is defined as

p(x1,...,xn) = Pr{X1 = x1,...,Xn = xn} . (A.2)

The marginal pmf p(xi) is obtained by summing over all evaluations

of p(x\,...,xn) at Xj = üj for all j ^ i and u) G £1.

The i-th moment of a discrete random variable X is defined as

pi\ is the expected value of X, also denoted as -E[X]. The i-th central

moment of X is

A, - $>-£[*])«. p(z). (A.4)
x£l

The second central moment A2 is called the variance of X and is

denoted ax:

°x = £(* - E[X])2 p(x)
xESÏ

= £[(X - £[X])2]
= E[X2) - (E[X\)2 . (A.5)

\Jcf\ = ax is called the standard deviation of X.

The above definitions extend to random vectors. In chapter 3 the

following i-th moment of a random vector X = (X\,... ,Xn) is of

interest:

Ph-ji = S xjl...xji-p(x1,...,xn) . (A.6)
(x1,...,xn)£Qn

The first moments p,j (j = 1,... ,n) are exactly the expected values

-E[X/] of the components of X.

The second central moments of X follow in analogy to (A.5) as

A,u2 = E[(Xh-E[Xh])(Xh-E[Xh])]
= E[XjxXJ2] - E[Xh] • E[XJ2] . (A.7)
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Xj1j2 (ji,J2 £ {!> • • • ,n}) is called the covariance of the random vari-

ibles

relation coefficient Qx x , being defined as

ables Xj1 and Xj2 and is a measure for their correlation. If the cor-

e*H*H =

, thi\ • (A-8>

y Xj1 xJ2

is equal to zero, Xj1 and Xj2 are said to be uncorrelated. For j\ =

j2 = j the covariance is identical to the variance and QXjXj — 1-

Random Sequences

A random process {Xk} is a collection of random variables indexed by
k. If the randam variables have a discrete sample space Q as above

and k assumes values from the set of positive integers 0,1,2,..., then

{Xk} is called a random sequence. Index k can be thought of as the

discrete time. As in the context of probabilistic power estimation in

chapter 3, the random variables Xk may itself be multi-dimensional,
i.e. the Xk may be random vectors.

A random sequence is said to be strict-sense stationary if the

pmf's associated to any two sequences Xk,Xk+i, - - - ,Xk+n and

Xk-\-T,Xk+T+i, • • • ,Xk+T+n are identical. This requires that all

moments of Xk,Xk+i, - - - ,Xk+n are independent of time k. As

opposed to this, wide-sense stationarity only requires £7[Xfc] and

E[XkXk+T], i-e. the first two moments to be independent of k. In

general, the term stationary is used to indicate time-independence
for all statistical properties.

A random sequence {Xk} is said to be an i.i.d. sequence if all its

random variables are independent and identically distributed, i.e.

have the same probability mass function p(x).

A random sequence {Xk} forms a Markov chain if

Pr{Xk+i=xk+i\Xk=Xk,...,Xo = xo} = Pr{Xk+i=Xk+i\Xk=xk}
(A.9)
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for all states ïj G fi, where Pr{X = x\Y = y} is the conditional

probability of X assuming the value x given that Y has assumed y.

Thus, in a Markov chain the next state k + 1 depends only on the

current state k but is conditionally independent of the past. Therefore,
a Markov chain is completely specified by the transition probability
matrix Q with elements qij (i,j G 1,..., |fi|), denoting the probability
of changing from state i to state j in the next time step, i.e. qij =

Pr{Xk+i=j\Xk=i}-
If the probabilities 7Tj = Pr{Xk = i}, (i = 1,... ,\Cl\) converge

for k —»• oo, the row vector tv = [it\,..., ^"|0|] is called stationary
distribution of the Markov chain and can be obtained from solving
the set of linear equations (Chapman-Kolmogorov equation)

-kQ = 7T

TTi + . . . + TTini = 1. (A.10)



Appendix B

Basics of Information

Theory

This section provides an overview of basic quantities and their prop¬

erties as being used in digital information theory. It builds upon

elementary notations from probability theory as given in appendix A.

The material widely follows [CT91] in style and naming convention.

Entropy

Let X be a discrete random variable X with alphabet X and probabil¬

ity mass function (pmf) p(x) as defined in appendix A. The entropy

or information content, of X, or uncertainty in X, is defined as

H(x) = -2>Mlogp(z) (B.l)
xex

with the convention OlogO = 0. If the log in (B.l) is to the base

2, then entropy is measured in bits, which is assumed throughout
this text. Alternatively for H(X) one may write H(pi,... ,p\x\) f°r

Pi = p(xi), i = 1,.. .,\X\. With the above definition, entropy solely

depends on the probability distribution of X, but not on the actual

values it can take. Furthermore (B.l) implies

0 < H(X) < log \X\ . (B.2)
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Figure B.l: Binary entropy function h(p) and switching activity function

4p(l-p).

The right-side equality holds if and only if p(x) is the uniform distri¬

bution, i.e. p(x) ~ U. The redundancy in X is defined as the difference

between the maximum and the actual entropy:

K(X) = log \X\ - H(X) . (B.3)

Of particular interest in digital VLSI is the binary entropy function

h(p) for a binary random variable X with X = {0,l},p(l) = p, and

p(0) = l-p:

h(p) = H(X) = -plog(p)-(l-p)log(l-p). (B.4)

The graph of h(p) depicted in figure B.l illustrates that the entropy of

a binary random variable is maximized for p = 0.5. Furthermore, h(p)
is monotonically increasing in the interval (0, 1/2] and decreasing in

[1/2, 1). The redundancy of a binary random variable X follows from

(B.3) as H(X) = 1 — h(p). Also note the similarity of the graph for

h(p) with the switching activity graph for p = — 1 in figure 3.4. As

can be seen

h(p) > 4p(l-p), (0<p<l). (B.5)

The concept of entropy of a random variable X natu¬

rally extends to the joint entropy of a collection of random
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variables (X\,X2, - - -,Xn) with joint probability mass function

p(x1,x2,.-.,xn):

H(X1,...,Xn) = - ^•••S P(xi,---,xn)logp(x1,...,xn) .

x\ÇlX\ xnÇ.Xn

Mutual Information

The conditional entropy of a pair of random variables (X, Y) with

probability mass function p(x, y) is defined as

H(X\Y) = - 53 £>(*,?) logp(z|y) . (B.6)
xexyey

Conditional entropy H(X\Y) can be interpreted as the remaining un¬

certainty in X given the knowledge of Y. Definition (B.6) ensures

correspondence between conditional entropy and conditional proba¬

bility by virtue of the following chain rule:

H(X,Y) = H(Y) + H(X\Y) . (B.7)

Based on conditional entropy, the mutual information between two

random variables is defined as

I(X;Y) = H(X)-H(X\Y) = H(Y) - H(Y\X) . (B.8)

Thus, I(X; Y) can be viewed as the reduction in uncertainty in X due

to the knowledge of Y. Note that mutual information is symmetric,
i.e. X contains as much information about Y as Y contains about X.

Mutual information can also be thought of as the "distance" between

the joint distribution and the product of the marginal distributions

of X and Y: The higher the "distance" between p(x, y) and p(x)p(y),
the higher is the correlation between X and Y, and the higher is the

mutual information I(X; Y). Figure B.2 explains the relation between

entropy and mutual information by means of a Venn diagram.

Entropy Rate

Let {Xk} be a random sequence as defined in appendix A. The entropy
rate % of {Xk} is defined as the average entropy per symbol of a
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joint entropy

H(X,Y)

mutual information

l(X;Y)

Figure B.2: Relation between entropy and mutual information.

sequence of n random variables as n goes to infinity:

%({Xk}) = lim -H(X1,X2,...,Xn). (B.9)
n—»-oo n

For stationary processes the limit in (B.9) always exists and equals
the conditional entropy of the last random variable given the past, i.e.

U ({Xk}) = limn_»oo H(Xn\Xn_1,..., Xi).
For two types of random processes the entropy rate becomes par¬

ticularly simple. First, for an independent and identically distributed

(i.i.d.) sequence the entropy rate equals the entropy of its random

variables:

H({Xk}) = H(X) when {Xfc} i.i.d. (B.10)

Second, if {X^} forms a stationary Markov chain the entropy rate

is given by

H({Xk}) = H(Xn\Xn_1) (B.ll)

= - 53 PiQv log Qv (B.12)

where p, is the stationary distribution and Q is the transition matrix

as defined in appendix A.



Appendix C

FSM Analysis Example

By means of the example shown below, this appendix demonstrates

how arithmetic transformation1 can be utilized for the exact analysis
of feedback circuits. Assume input x is highly (first-order) anti-

correlated (qx = —0.6). Then, state signal s must be modeled as

lag-two Markov chain, see theorem 3.3. This is equivalent to using
the given moments p1 and px~}x for the analysis. On the other hand,

a lag-one Markov chain disregards the temporal correlation of x by

specifying the state transition probabilities in terms of p\ only. As

will be seen, this can result in large errors for the switching activity ay.

x(k)

s(k)

x=l

3>

A.

-m

x=0

S=Q) (5=1

x=l, x=0

given:

Pl = l

2'
pl-l
fx-x

_i_
10

to be calculated:

Psi Pxsi Ps-xi Pxs-x

„1-1 „1-1 „1-11 „1-11 „11-1 „11-11
"s-S ' IrX-S ' "x-XS ' "s-XS ' JrXS-S ' "XS-XS

Oi,,

1The arithmetic transform technique for probabilistic activity calculation in

combinational circuits is described in section 3.4. For the meaning of mathematical

notations used in the present example, see section 3.3.
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Lag-two Markov chain model

Construction of the arithmetic transform for the next-state function2

sk+i _ xk \j sk anci £ne extended next-state function obtained from

AND-ing both sides with xk+1, yields

sk+l _ i_xk_sk+xkgk

xk+isk+i = xw_xkxk+i_skxk+i + xkskxk+i

which translates into equations for two of the unknown moments:

p] = i-pI-pI+pH (ci)

Pxs Px Px-x Ps-x ' Pxs-x '

\ )

This brings two other unknowns p~_x and pxs~.x into operation. Under

a lag-two Markov chain model pxs~.x can be expressed in terms of px,

px~_x and px\ as follows:

Pill = Pr{xk = l,sk = l,xk+1 = l}
= Pr{sk - l,xk+1 - l\xk = l}Pr{xk = 1}
= Pr{sk = l\xk = l}Pr{xk+1 = l\xk = l}Pr{xk = 1}

= pIIPx-I/pI (C3)

In (C.3) the third equality holds, because xk+1 only depends on xk

but not on previous input values (first-order temporal correlation).
On the other hand, sk depends on xk~x and sk~1. Thus, if xk is

fixed, xk+1 and sk are independent. The derivation of p1!* follows a

similar reasoning:

l-i
=

n-1
+

01-1

fs-x fxs-x ' rxs-x

=

11-1
+

010-1/0

trXS-X ' rxsrx-XI rx

= pill + p°xl(pi - pi"-1x)/(i - pD (c.4)

In (C.4) the second term of the right-hand side is derived in analogy
to pxs:l in (C.3), with px-}x =p\- px-_l, see (3.9). Finally, pfs can

2Time index k is denoted a superscript.
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be expressed in terms of moments by constructing the corresponding
arithmetic transform xk+1sk+1:

(l-xk+1)sk+1 = l-xk+1-xk(l-xk+1)-sk(l-xk+1)+xksk(l-xk+1)

which translates into

pfs = i - 2rf + pI:1 - pI + pI:1 + pu - Pill - (c.5)

With this expression, (C.1)-(C4) yield a set of linear equations for

the unknown moments that refer to the static behavior of state signal
s:

(2 -1 0 0

0 1 1 -1

ß -ß 1-ß ß-1

\Q Px-xl Px 0 1

\

7

I p\ \
p\\
FXS

\ Pill )

I i-ri \
pI - p1'1

'x-x

\

ß-5
0 /

with ß = (pi -pI-_1)/(1-pD and Ö = 1 - 2p\ +p%}x. Solving this set

of equations3 with the given px and px~_x gives

0.417, px\ = 0.333, p]:l = 0.133, p^}x = 0.067
. (C.6)Ps

Information on the temporal correlation of the state signal s can be

inferred from AND-ing the next-state function with sk in consideration

of the exponent suppression rule, see (3.22). In general, this would

eventually result in another set of equations. However, for the present

example we have

k^k+l
_

S S
„knk

= sK - xKsK
- SK + xKsK

= 0k„k —

From this, the following moments are determined:

fs-S FXS-S

1-11

's-xs

11-11

'xs-xs
Ps-xs Pxs-x" '-' (C.7)

This result is in accordance with the state transition graph of the

example circuit, where there is no self-edge on state s = 1. Similarly,
from AND-ing the next-state function with xk, one obtains

ü1"1
= p1"11 = 0

fx-s rx-xs
" (C8)

3Note that there always exists a unique solution because the matrix of coeffi¬

cients has full rank for any valid combination of values for p\ and p^}x
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With (C.6)-(C8) all necessary moments of the circuit input are de¬

termined and the switching activity of all gates in the combinational

part of the circuit may be calculated by means of the procedure in¬

troduced in section 3.4.2. In the present case, the true4 switching

activity ay is simply given as

ay = 2(pl - pH) = 0.833
. (C.9)

Lag-one Markov chain model

Next, the above result shall be compared with the ones available from

applying the conventional lag-one Markov chain model to the state

signal s, see appendix A. In case of the present example circuit, the

one-step state transition probability matrix Q is given as

Q =

vl 1~pI
i o

(CIO)

Solving the corresponding Chapman-Kolmogorov equation, see

(A.10), yields the static probability of the state signal:

Pi = (l-PÎ)/(2-rf) = I- (C.11)

This obviously deviates from the true result in (C.6).
Using this incorrect result and furthermore erroneously assuming

that s is temporally uncorrelated, the switching activity of y amounts

to

ay = 2pl(l-p]) = 0.444 (C.12)

which is only half the true value in (C.9). Even exploiting the

knowledge of the state-transition probabilities, which is helpful in the

present example only because y = s, yields

ày = 2p\ = 0.667 (C.13)

which is still 20% short of the true value.

Thus, the conventional (lag-one) Markov chain model for finite-state

machines only represents a raw approximation for feedback circuits

with temporally correlated primary inputs.

4The result has been verified by logic simulation.



Appendix D

Memory Structures for

FIR Filters

This appendix provides an overview on possible realizations of the

functional data memory for finite impulse response (FIR) filters, and

presents experimental results on power dissipation and area usage for

such memory structures. In general, a similar data memory organi¬
zation is required for the realization of any inner product operation,

e.g. in correlator units.

Memory Structures

In an AT-tap FIR filter

N-l

y(k) = S c"-x(k - n)
71=0

each input data sample contributes to N consecutive output samples.

Therefore, storage capacity for N input samples is required.
It is assumed, that the FIR filter algorithm is to be performed

on a single multiply-accumulate unit in a fully time-shared manner

as in section 5.4. The filter coefficients cn (n = 0,..., N — 1) are

not known a priori and could be time-varying as in adaptive filters.
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Furthermore, the functional data memory shall be built from bistable

devices (flip-flops). Then, there are basically three different schemes

to realize data storage and access for FIR filtering:

FSR : feedback shift register with fixed read/write position,

SRR : shift register with fixed write and random read access,

RRW : register file with random read/write access.

The register file with random read/write access (RRW) corresponds
to a solution with a macro-cell RAM which, however, is not further

considered here. Instead, two alternative implementations for RRW

are examined:

RRWmx : register file with multiplexed inputs,

RRWcg : register file with gated clock signals.

Figure D.l shows the the alternative memory structures for any of

which the following shall hold:

• New input data samples arrive at a frequency fs (data sampling

frequency).

• Data samples at the output of the memory (input to data path)
are registered at frequency N-fs-

• The data path processes the data samples in the following order:

x(k),x(k- l),...,x(k- AT + 1).

• Two in-phase clock signals of frequencies fs and N-fs are avail¬

able at no cost.

Note that the four memory structures in figure D.l not only differ

in their hardware complexity, but also map the same input signal
statistics to node activities in distinct ways.
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FSR SRR

•Out

k

*—
+1

modN

y

A

-Out

Read Select

RRWmx

A.
m̂odN

A.

Out

Read Select

A.

+i

mod N

¥

RRWcg

n

y

A.

•Out

Read Select

In-t^llli ,p.

,

A

-1

modW

Figure D.l: Alternative memory structures for FIR filtering.

Experimental Evaluation

For each memory structure a VHDL model has been generated.

Using Synopsys DesignCompiler, netlists were synthesized (0.25/mi
CMOS standard cell library) for N = 8,16,32,64,128 and a data

word width of 12 bits. Each netlist was optimized for minimum area.

Then, the gate-level netlists have been exercised with speech stimuli

(fs = 8 kHz) in 2's-complement representation. Activities including

glitches have been captured by utilizing gate-delay models provided

by the technology library. Finally, average power consumption
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#of

taps N

Power Area

FSR SRR RRWmx RRWcg FSR SRR RRWmx RRWcg

8 3.9 1.3 1.4 1.0 19 22 31 24

16 12.7 2.8 2.9 2.4 33 39 56 43

32 46.5 5.8 6.2 5.2 61 74 106 80

64 178.8 13.0 14.0 11.7 117 142 204 151

128 704.8 31.4 29.5 26.3 227 279 399 294

Table D.l: Power dissipation [pW] and area usage [103/tm2] for different

memory structures of FIR filters (data word width = 12 bits).

Power

32

log(A0

Area

Figure D.2: Interpolated data from table D.l on double-logarithmic scale.

has been computed for estimated capacitive loads using Synopsys

DesignPower. Table D.l summarizes the numerical results. In

figure D.2 these results have been interpolated and plotted on a

double-logarithmic scale.

The experimental results permit the following conclusions:

• While memory structures SRR, RRWmx, and RRWcg have

comparable power dissipation, the minimum hardware solution

FSR dissipates exorbitantly more power. This is due to the

clocking of the registers at a frequency of N-fs for FSR.

• Memory structure RRWcg ,
which uses clock-gating, achieves

the minimum power dissipation of all alternatives. With in-
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creasing data word width, the advantage of RRWcg is expected

to grow further because the relative overhead due to the clock-

gating circuitry will diminish.

• RRWmx with multiplexed flip-flop inputs is the least desirable

memory structure, since it implies the largest area cost while

being less energy-efficient than RRWcg-

• Power dissipation and area cost grow nearly linear with respect

to the number of filter taps N for all considered memory struc¬

tures.



Seite Leer /

Blank leaf



Bibliography

[Abr63]

[ALES98]

N. Abramson. Information Theory and Coding.
tronic Science Series. McGraw-Hill, 1963.

Elec-

A. Alvandpour, P. Larsson-Edefors, and C. Svensson.

Impact of Miller capacitances on power consumption.
In Proc. 8th Int. Workshop Power and Timing Model¬

ing, Optimization and Simulation (PATMOS'98), Lyn-

gby DK, Oct. 1998.

[AMD+94] M. Alidina, J. Monteiro, S. Devadas, A. Ghosh, and

M. Papaefthymiou. Precomputation-based sequential

logic optimization for low power. IEEE Trans. VLSI

Syst., 2(4):426-436, Dec. 1994.

[Ben73] C.H. Bennett. Logical reversibility of computation. IBM

J. Res. Develop., 17:525-532, 1973.

[BG99] V.A. Bartlett and E. Grass. A low-power FIR filter

exploiting data-dependent operation. In Proc. 9th Int.

Workshop Power and Timing Modeling, Optimization
and Simulation (PATMOSl99), 1999.

[BGL+98] C.H. Bennett, P. Gâcs, M. Li, P.M.B. Vitânyi, and W.H.

Zurek. Information distance. IEEE Trans. Inform. The¬

ory, 44(4): 1407-1423, 1998.

[BL85] C.H. Bennett and R. Landauer. The fundamental phys¬
ical limits of computation. Scientific American, pages

38-46, 1985.

173



174 Bibliography

[BMM+OO] L Benini, A. Macii, E. Macii, M. Poncino, and R. Scarsi.

Architectures and synthesis algorithms for power-efficient
bus interfaces. IEEE Trans. Computer-Aided Design,

19(9):969-980, Nov. 2000.

[BNYT93] R. Burch, F.N. Najm, P. Yang, and T.N. Trick. A Monte

Carlo approach for power estimation. IEEE Trans. VLSI

Syst., 1(1):63-71, March 1993.

[BS91] I.N. Bronstein and K.A. Semendjajew. Taschenbuch der

Mathematik. B.G. Teubner Verlagsgesellschaft, 25 edi¬

tion, 1991. (in German).

[BTR00] D.K. Brock, E.K. Track, and J.M. Rowell. Superconduc¬
tor ICs: The 100-GHz second generation. IEEE Spec¬

trum, Dec. 2000.

[C+98] D.I. Cheng et al. A hybrid methodology for switching ac¬

tivities estimation. IEEE Trans. Computer-Aided Design,

17(4):357-366, Apr. 1998.

[CA90] K.-T. Cheng and V. Agrawal. An entropy measure for the

complexity of multi-output Boolean functions. In Proc.

Design Automation Conf., pages 302-305, 1990.

[CB95] A. P. Chandrakasan and R. W. Brodersen. Low Power

Digital CMOS Design. Kluwer, Norwell, MA, 1995.

[CMD97] J.C. Costa, J.C. Monteiro, and S. Devadas. Switching

activity estimation using limited depth reconvergent path

analysis. In Proc. Int. Symp. Low Power Electronics and

Design, pages 184-189, 1997.

[CSY96] D.-S. Chen, M. Sarrafzadeh, and G.K.H. Yeap. State

encoding of finite state machines for low power design.
J. Circuits, Systems and Computers, 6(6):649-661, Dec.

1996.

[CT91] T.M. Cover and J. A. Thomas. Elements of Information

Theory. John Wiley and Sons, 1991.



Bibliography 175

[CZV65] M Combet, H. Zonneveld, and L. Verbeek. Computa¬
tion of the base two logarithm of binary numbers. IEEE

Trans. Electron. Comput., EC-14:863-867, Dec. 1965.

[DTP98] C.-S. Ding, C.-Y. Tsui, and M. Pedram. Gate-level power

estimation using tagged probabilistic simulation. IEEE

Trans. Computer-Aided Design, 17(11):1099-1107, Nov.

1998.

[GDKW92] A. Ghosh, S. Devadas, K. Keutzer, and J. White. Estima¬

tion of average switching activity in combinational and

sequential circuits. In Proc. Design Automation Conf,

pages 253-259, 1992.

[Ger96] N. Gershenfeld. Signal entropy and the thermodynamics
of computation. IBM Systems Journal, 35(3&4):577-586,
1996.

[Hel72] L. Hellermann. A measure of computational work. IEEE

Trans. Comput, C-21:439-446, May 1972.

[Hey99] A.J.G. Hey, editor. Feynman and Computation: Explor¬

ing the Limits of Computers. Perseus Books, 1999.

[HMPS96] G.D. Hachtel, E. Macii, A. Pardo, and F. Somenzi.

Markovian analysis of large finite state machines. IEEE

Trans. Computer-Aided Design, 15(12):1479-1493, Dec.

1996.

[Hwa79] K. Hwang. Computer Arithmetic: Principles, Architec¬

ture and Design. Wiley & Sons, 1979.

[HYH99] M.C. Hansen, H. Yalcin, and J.P. Hayes. Unveiling the

ISCAS-85 benchmarks: A case study in reverse engineer¬

ing. IEEE Design & Test of Comput, pages 72-80, July-

Sept. 1999.

[IP97] S. Iman and M. Pedram. Low Power Design in Deep Sub-

micron Electronics, chapter Combinational Circuit Opti¬
mization. Kluwer, 1997.



176 Bibliography

[JN84] N.S. Jayant and P. Noll. Digital Coding of Waveforms.

Prentice-Hall, 1984.

[KaeOO] H. Kaeslin. VLSI II: Design of Very Large Scale Integra¬
tion Circuits. Lecture notes, Integrated Systems Labora-

toty, ETH Zürich, 2000.

[KAK99] A. Kabbani and A.J. Al-Khalili. Estimation of ground
bounce effects on CMOS circuits. IEEE Trans. Com¬

ponents and Packaging Technology, 22(2):316-325, June

1999.

[KB98] M. Kahrs and K. Brandenburg, editors. Applications of

Digital Signal Processing to Audio and Acoustics. Kluwer

Academics, 1998.

[KeyOl] R.W. Keyes. Fundamental limits of silicon technology.
Proc. of the IEEE, pages 227-239, March 2001.

[Kon94] A.M. Kondoz. Digital Speech: Coding for Low Bit Rate

Communications Systems. John Wiley & Sons, 1994.

[KS99] L.M. Krauss and G.D. Starkman. The fate of life in the

universe. Scientific American, pages 36-43, Nov. 1999.

[Lan61] R. Landauer. Irreversibility and heat generation in the

computing process. IBM J. Res. Develop., 5:183-191,

1961.

[Lew90] D.M. Lewis. An architecture for addition and subtraction

of long word length numbers in the logarithmic number

system. IEEE Trans. Comput, 39(11): 1325-1336, Nov.

1990.

[LNC96] J.T. Ludwig, S.H. Nawab, and A.P. Chandrakasan.

Low-power digital filtering using approximate processing.
IEEE J. Solid-State Circuits, 31(3):395-400, 1996.

[LR90] H. Leff and A. Rex, editors. Maxwell's Demon: Entropy,

Information, Computing. Princeton University Press,
1990.



Bibliography 177

[MDOO] J.D. Meindl and J.A. Davis. The fundamental limit on

binary switching energy for terascale integration (TSI).
IEEE J. Solid-State Circuits, 35(10):1515-1516, Oct.

2000.

[MDG+97] J. Monteiro, S. Devadas, A. Ghosh, K. Keutzer, and

J. White. Estimation of average switching activity
in combinational logic circuits using symbolic simula¬

tion. IEEE Trans. Computer-Aided Design, 16(1):121-
127, Jan. 1997.

[Mei95] J.D. Meindl. Low power microelectronics: Retrospect and

prospect. Proc. of the IEEE, 83(4):619-635, Apr. 1995.

[Mit62] J.N. Mitchell. Computer multiplication and division us¬

ing binary logarithms. IRE Trans. Electron. Comput,

EC-11:512-517, 1962.

[MMP95] R. Marculescu, Diana Marculescu, and M. Pedram.

Efficient power estimation for highly correlated input

streams. In Proc. 32nd Design Automation Conf., pages

628-634, San Francisco, CA, 1995.

[MMP96] D. Marculescu, R. Marculescu, and M. Pedram. Informa¬

tion theoretic measures for power analysis. IEEE Trans.

Computer-Aided Design, 15(6):599-610, June 1996.

[MMP97] R. Marculescu, D. Marculescu, and M. Pedram. Com¬

posite sequence compaction for fine-state machines using
block entropy and high-order Markov models. In Proc.

Int. Symp. Low Power Electronics and Design, pages 190-

195, 1997.

[MMP98] R. Marculescu, D. Marculescu, and M. Pedram. Prob¬

abilistic modeling of dependencies during switching ac¬

tivity analysis. IEEE Trans. Computer-Aided Design,

17(2):73-83, Feb. 1998.

[MMP99] R. Marculescu, D. Marculescu, and M. Pedram. Sequence

compaction for power estimation: Theory and prac¬

tice. IEEE Trans. Computer-Aided Design, 18(7):973-
993, July 1999.



178 Bibliography

[MPS98] E. Macii, M. Pedram, and F. Somenzi. High-level power

modeling, estimation, and optimization. In IEEE Trans.

Computer-Aided Design, volume 17, pages 1061-1079,

Nov. 1998.

[NN96a] M. Nemani and F.N. Najm. High-level power estimation

and the area complexity of Boolean functions. In Proc.

Int. Symp. Low Power Electronics and Design, pages 329-

334, 1996.

[NN96b] M. Nemani and F.N. Najm. Towards a high-level power

estimation capability. IEEE Trans. Computer-Aided De¬

sign, 15(6):588-598, June 1996.

[NN99] M. Nemani and F.N. Najm. High-level area and power

estimation for VLSI circuits. IEEE Trans. Computer-
Aided Design, 18(6):697-713, 1999.

[NOC+97] S.H. Nawab, A.V. Oppenheim, A.P. Chandrakasan, J.M.

Winograd, and J.T. Ludwig. Approximate signal process¬

ing. J. VLSI Signal Processing Systems, 15:177-200, Jan.

1997.

[NS99] L.S. Nielsen and J. Sparso. Designing asynchronous cir¬

cuits for low power: An IFIR filter bank for a digital

hearing aid. Proc. of the IEEE, 87(2):268-281, 1999.

[Opp70] A.V. Oppenheim. Realization of digital filters using block

floating point arithmetic. IEEE Trans. Audio and Elec-

troacoustics, 18:130-136, 1970.

[PanOO] C.J. Pan. A stereo audio chip using approximate process¬

ing for decimation and interpolation filters. IEEE Trans.

Solid-State Circuits, 35(l):45-55, Jan. 2000.

[PM75] K. Parker and E. McClusky. Probabilistic treatment of

general combinational networks. IEEE Trans. Electron.

Comput, C-24(6):668-670, 1975.



Bibliography 179

[RB97] K. Ralev and P. Bauer. Implementation options for block

floating point digital filters. In Proc. Int. Conf. on Acous¬

tics, Speech, and Signal Processing (ICASSP-97), vol¬

ume 3, pages 2197-2200, 1997.

[RSH99a] S. Ramprasad, N.R. Shanbhag, and I.N. Hajj. Decor-

relating (DECOR) transformations for low-power digital
filters. IEEE Trans. Circuits and Syst., 46(6):776-787,
June 1999.

[RSH99b] S. Ramprasad, N.R. Shanbhag, and I.N. Hajj. Signal cod¬

ing for low power: Fundamental limits and practical re¬

alizations. IEEE Trans. Circuits and Syst.-II, 46(7):923-
929, July 1999.

[S+95] D. Singh et al. Power conscious CAD tools and method¬

ologies: A perspective. Proc. of the IEEE, 83(4):570-594,
Apr. 1995.

[SA75] E.E. Swartzlander and A.G. Alexopoulos. The

sign/logarithm number system. IEEE Trans. Comput.,

C-24:1238-1242, Dec. 1975.

[SBG99] S.L. SanGregory, C. Brothers, and D. Gallagher. A fast,

low-power logarithm approximation with CMOS VLSI

implementation. In Proc. 42nd Midwest Symposium on

Circuits and Systems, 1999.

[Sch99] A. Schaub. Hearing aid. Patent P1573, Bernafon AG,

Switzerland, 1999.

[SF96] T. Sasao and M. Fujita, editors. Representation of Dis¬

crete Functions. IFIP WG 10.5 Workshop on Application
of the Reed-Muller Expansion in Circuit Design. Kluwer,

1996.

[Sha48] C.E. Shannon. A mathematical theory of communication.

The Bell System Technical Journal, 27:379-423,623-656,

July, Oct. 1948.



180 Bibliography

[Sha97] N.R. Shanbhag. A mathematical basis for power-

reduction in digital VLSI systems. IEEE Trans. Circuits

and Syst., 44(11):935-951, Nov. 1997.

[SK96] P.H. Schneider and S. Krishnamoorthy. Effects of corre¬

lations on accuracy of power analysis - an experimental

study. In Proc. Int. Symp. Low Power Electronics and

Design, pages 113-116, Monterey, CA, 1996.

[SP00] J. Satyanarayana and K. Parhi. Theoretical analysis of

word-level switching activity in the presence of glitching
and correlation. IEEE Trans. VLSI Syst., 8(2): 148-159,

Apr. 2000.

[SQA] Sound quality assessment material. European Broadcast¬

ing Union. CDROM (Cat.No 422 204-2).

[SR00] A.M. Steane and E.G. Rieffel. Beyond bits: The future of

quantum information processing. IEEE Computer, pages

38-45, Jan. 2000.

[SRB97] N. Sankarayya, K. Roy, and D. Bhattacharya. Algorithms
for low power FIR filter realization using differential co¬

efficients. In Proc. 10th Int. Conf. on VLSI Design, pages

174-178, Jan. 1997.

[SSW96] P.H. Schneider, U. Schlichtmann, and B. Wurth. Fast

power estimation of large circuits. IEEE Design & Test

of Comput, pages 70-78, Spring 1996.

[SW86] H. S. Stark and J.W. Woods. Probability, Random Pro¬

cesses, and Estimation Theory for Engineers. Prentice-

Hall, 1986.

[Szi29] L. Szilard. On the decrease of entropy in a thermody¬
namic system by the intervention of intelligent beings. Z.

f. Physik, 53:840-856, 1929. (in German).

[T+95] C-Y. Tsui et al. Power estimation methods for sequen¬

tial logic circuits. IEEE Trans. VLSI Syst, 3(3):404-416,
1995.



Bibliography 181

[TTSG97] S. Theoharis, G. Theodoridis, D. Soudris, and C. Goutis.

A new method for switching activity estimation of logic
level networks. In Proc. 7th Int. Workshop Power and

Timing Modeling, Optimization and Simulation (PAT-
MOS '97), pages 131-140, September 8-11 1997.

[WKFOO] J. Wassner, H. Kaeslin, and N. Felber. Experimental

speech data analysis with application to low-power DSP.

Technical report, ETH Zurich, Integrated Systems Labo¬

ratory, 2000.

[WKFF99] J. Wassner, H. Kaeslin, N. Felber, and W. Fichtner. Spec¬
tral transformation of Boolean functions for probabilistic

power estimation. In Proc. 9th Int. Workshop Power and

Timing Modeling, Optimization and Simulation (PAT-
MOS'99), pages 169-178, Greece, Oct. 1999.

[WKFFOO] J. Wassner, H. Kaeslin, N. Felber, and W. Fichtner.

Speech coding for energy-efficient digital signal process¬

ing. In CDROM-Proc. 43rd IEEE Midwest Symposium
on Circuits and Systems (paper 05/001), Lansing, MI,

USA, Aug. 2000.

[WKFF01] J. Wassner, H. Kaeslin, N. Felber, and W. Fichtner.

Waveform coding for low-power digital filtering of speech
data, submitted to IEEE Trans. Signal Processing, 2001.

[XN94] M.G. Xakellis and F.N. Najm. Statistical estimation of

the switching activity in digital circuits. In Proc. 31rd De¬

sign Automation Conf., pages 728-733, San Diego, CA,
1994.

[Yea98] G.K. Yeap. Practical Low Power Digital VLSI Design.
Kluwer Academic Publishers, 1998.

[YTK98] L.-P. Yuan, C.-C. Teng, and S.-M. Kang. Statistical esti¬

mation of average power dissipation using nonparametric

techniques. IEEE Trans. VLSI Syst., 6(l):65-73, March

1998.



Seite Leer /



Curriculum Vitae

Jürgen Wassner was born in Lauchhammer, Germany, on April 9,

1967. He received a technical degree in electronics before enrolling in

Electrical Engineering at the Technical University of Dresden, Ger¬

many, in 1990. From the same institution he received the Dipl.-Ing.

(M.Sc.) degree (with distinction) in 1995 for his diploma thesis on

graph-theoretical methods in control system analysis.

During 1994-95 he spent six months as research scholar at the

Department of Electrical and Computer Engineering at the Univer¬

sity of Wisconsin, USA. There he contributed to the design of new

algorithms for the modeling of electric power systems.

In 1995 he joined the European subsidiary of Silicon Valley Group

(SVG) Inc. as System Engineer, working on lithographic equipment

for the semiconductor industry. In this position he was promoted to

supervise the technical support and advancement of SVG supplies at

the semiconductor fab MOS4YOU of Philips Inc., Netherlands.

Since 1997 he has been working as research and teaching assistant

at the Integrated Systems Laboratory of the Swiss Federal Institute

of Technology (ETH) Zürich, Switzerland, towards his Doctoral de¬

gree. His research interest embraces all aspects of digital low-power
VLSI design, specifically those related to data statistics, digital signal

processing, and computer arithmetic.

183


